浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 超精密光电仪器工程研究所,黑龙江 哈尔滨,150001
2. 装备指挥技术学院 北京,101416
收稿日期:2010-12-29,
修回日期:2011-01-25,
网络出版日期:2011-06-25,
纸质出版日期:2011-06-25
移动端阅览
曾峦, 王元钦, 谭久彬. 改进的SIFT特征提取和匹配算法[J]. 光学精密工程, 2011,19(6): 1391-1397
ZENG Luan, WANG Yuan-qin, TAN Jiu-bin. Improved algorithm for SIFT feature extraction and matching[J]. Editorial Office of Optics and Precision Engineering, 2011,19(6): 1391-1397
曾峦, 王元钦, 谭久彬. 改进的SIFT特征提取和匹配算法[J]. 光学精密工程, 2011,19(6): 1391-1397 DOI: 10.3788/OPE.20111906.1391.
ZENG Luan, WANG Yuan-qin, TAN Jiu-bin. Improved algorithm for SIFT feature extraction and matching[J]. Editorial Office of Optics and Precision Engineering, 2011,19(6): 1391-1397 DOI: 10.3788/OPE.20111906.1391.
针对月球影像和尺度不变特征变换(SIFT)算法的特点
在改进SIFT特征提取算法的基础上
提出了一种稳健的图像自动匹配策略。首先
自动调整SIFT算法中的对比度控制系数
提高关键点提取的均衡性;然后
用SIFT描述向量之间的欧氏距离最小值与次小值的比值作为阈值
进行粗匹配
并利用匹配对主方向角度差直方图剔除部分伪匹配;最后
自动计算随机采样次数、误差容忍度等参数
使用改进的随机选取一致性(RANSAC)方法确定透视变换模型初始参数
并用该模型和误差容忍度对匹配集合中的匹配对进行校验
选取出正确的匹配对。实验结果表明
在图像有一定程度的视点、光照、旋转、比例、模糊和对比度变化等情形下
该算法稳定、可靠。该方法能有效解决图像匹配门限的选择问题
真正实现了无人工干预的自动匹配。
A robust automated image matching strategy based on an improved SIFT feature extraction algorithm was proposed according to the characteristics of SIFT algorithm and lunar images. Firstly
the extraction equilibrium of key points was improved by automatically adjusting the coefficient of controlling contrast in the SIFT algorithm.Then
the coarse matching was carried out by using the ratio of the minimum and the second minimum Euclidean distance between the description vectors of SIFT as a threshold and the part incorrect matching of the coarse matching set was removed by principal direction angle difference histogram of matches. Finally
the initial parameters of perspective transformation model were determined by using modified RANSAC method
automatically calculated random sampling numbers
and parameters of error tolerance. Moreover
the model and the error tolerance were used to calibrate the matching pairs in the matching set and to select the correct matching pairs. The experimental results prove that the proposed method is stable and reliable under some variations for view points
illumination
rotation
scale and out of focus and it can select the matching threshold of images automatically without manual intervention.
沈荣骏,李学军. 自动制图月球遥感数据处理的新方向[J]. 装备指挥技术学院学报,2010,21(1):1-5. SHEN R J,LI X J.Automatic selenograph production-new direction of the lunar remote sensor data processing[J]. Journal of the Academy of Equipment Command& Technology,2010,21(1):1-5. (in Chinese)[2] 王成儒,赵娜,张丽丽. 基于三角形几何相似性的图像配准与拼接[J]. 光电工程,2007,34(8):87-92. WANG CH R, ZHAO N, ZHANG L L. Image registration and stitching based on triangle geometry similarity[J]. Opto-Electronic Engineering, 2007,34(8):87-92. (in Chinese)[3] 高超,张鑫,王云丽,等. 一种基于SIFT特征的航拍图像序列自动拼接方法[J]. 计算机应用,2007,21(11):2789-2792. GAO CH,ZHANG X,WANG Y L,et al.. Automatic stitching approach of aerial image sequence based on SIFT features[J]. Computer Applications, 2007,21(11):2789-2792. (in Chinese)[4] 李晓明,郑链,胡占义. 基于SIFT特征的遥感影像自动配准[J]. 遥感学报,2006,10(6):885-892. LI X M, ZHENG L, HU ZH Y. SIFT Based automatic registration of remotely-sensed imagery[J].Journal of Remote Sensing, 2006,10(6):885-892.(in Chinese)[5] 刘焕敏,王华,段慧芬. 一种改进的SIFT双向匹配算法[J]. 兵工自动化,2009,28(6):89-91. LIU H M, WANG H, DUAN H F. A bidirectional matching SIFT algorithm[J]. Ordnance Industry Automation, 2009,28(6):89-91. (in Chinese)[6] 骞森,朱剑英. 基于改进的SIFT特征的图像双向匹配算法[J]. 机械科学与技术,2007,26(9):1179-1182. QIAN S, ZHU J Y. Improved SIFT-based bidirectional image matching algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2007,26(9):1179-1182. (in Chinese)[7] 杨晓敏,吴炜,卿粼波,等. 图像特征点提取及匹配技术[J]. 光学 精密工程,2009,17(9):2276-2282. YANG X M,WU W,QING L B,et al.. Image feature extraction and matching technology[J]. Opt. Precision Eng., 2009,17(9):2276-2282. (in Chinese)[8] 纪华,吴元昊,孙宏海,等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程,2009,17(2):439-444. JI H, WU Y H,SUN H H, et al.. SIFT feature matching algorithm with global information[J]. Opt. Precision Eng., 2009,17(9):439-444. (in Chinese)[9] FISHCHLER M, BOLLES R.Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography[J]. Communication Association Machine, 1981, 24(6):381-395.[10] LOWE D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004, 60(2):91-l10.[11] 赵向阳,杜利民. 一种全自动稳健的图像拼接融合算法[J]. 中国图象图形学报,2004,9(4):417-422. ZHAO X Y,DU L M. An automatic and robust image mosaic algorithm[J]. Journal of Image and Graphic, 2004,9(4):417-422.(in Chinese)[12] Download from http://www.robots.ox .ac.uk/~vgg/research/affine
0
浏览量
487
下载量
26
CSCD
关联资源
相关文章
相关作者
相关机构