浏览全部资源
扫码关注微信
昆明理工大学 材料科学与工程学院,云南 昆明,650093
收稿日期:2010-09-13,
修回日期:2010-11-18,
网络出版日期:2011-07-25,
纸质出版日期:2011-07-25
移动端阅览
刘洪喜, 曾维华, 张晓伟, 王传琦, 蒋业华. 不锈钢表面多道激光熔覆Ni基涂层的组织与性能[J]. 光学精密工程, 2011,19(7): 1515-1523
LIU Hong-xi*, ZENG Wei-hua, ZHANG Xiao-wei, WANG Chuan-qi, JIANG Ye-hua. Microstructures and properties of multiple-pass laser cladding Ni-based coatings on stainless steel surface[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1515-1523
刘洪喜, 曾维华, 张晓伟, 王传琦, 蒋业华. 不锈钢表面多道激光熔覆Ni基涂层的组织与性能[J]. 光学精密工程, 2011,19(7): 1515-1523 DOI: 10.3788/OPE.20111907.1515.
LIU Hong-xi*, ZENG Wei-hua, ZHANG Xiao-wei, WANG Chuan-qi, JIANG Ye-hua. Microstructures and properties of multiple-pass laser cladding Ni-based coatings on stainless steel surface[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1515-1523 DOI: 10.3788/OPE.20111907.1515.
为提高不锈钢的硬度和耐蚀性能
利用6 kW横流CO
2
激光器在1Cr18Ni9Ti表面进行了单道和多道Ni25WC35合金粉末熔覆。X射线能量色散分析(EDAX)和X射线衍射(XRD)分析表明
熔覆层主要由(Fe
Ni)固溶体和WC原位自生成的W
2
C组成
同时含有CrNiFeC
Cu
3.8
Ni化合物和FeW
3
C
Ni
2
Si
Fe
3
Ni
3
B等硬质相。光学显微形貌观察显示熔覆层组织均匀、致密
与基体结合良好。显微硬度测试得出熔覆层硬度为基体的2倍
最高出现在双道试样第二道熔覆层CZ区中部
其值达到650 HV。熔覆层在5.0%NaCl饱和溶液中的最高自腐蚀电位为-488.70 mV
较基体上升了630.9 mV;最低腐蚀电流密度为0.55 Acm
-2
较基体降低了75.11%。综合比较显示单道试样耐腐蚀性能最好。
In order to improve the surface hardness and corrosion resistance of stainless steel
single-pass and multi-pass lap laser cladding coatings of Ni25WC35 alloy powders were fabricated on a 1Cr18Ni9Ti substrate by a 6 kW transverse-flow CO
2
laser. The coatings were examined and tested for chemical compositions
microstructure features
phase structures
microhardness
corrosion behaviors and metallographies by the X-ray Diffraction (XRD)
Scanning Electronic Microscopy (SEM)
X-ray Energy Dispersive Analysis (EDAX)
microhardness tester
electrochemistry workstation and optical microscopy (OM)
respectively. The results show that some new harden phases are formed in the coating which consists of (Fe
Ni) solid solution and some compounds such as WC
W
2
C
CrNiFeC
FeW
3
C
Ni
2
Si
Fe
3
Ni
3
B
and these harden phases improve the hardness and corrosion resistance of the substrate effectively. OM observation displays that the microstructure of clad coating is homogeneous
compactness and forms a good metallurgical bonding layer with the substrate. Micro-hardness measurement exhibits that the surface hardness of treated sample is twice as large as that of substrate
and the highest hardness lies in the second pass cladding zone center of a double-pass coating sample and reaches 650HV. The electrochemical corrosion test in 5.0% NaCl saturated solution indicates that the maximum self-corrosion potential (
E
corr
) of clad coating sample changes from 630.90 mV to positive direction
and the lowest corrosion current density (
I
corr
) changes from 2.21 Acm
-2
to 0.55 Acm
-2
and decreases by 75.11%. Compared with the substrate
the corrosion resistance of laser cladding sample has been improved significantly
and the single pass cladding sample shows the best corrosion behavior.
SMUROV I. Laser cladding and laser assisted direct manufacturing[J]. Surface & Coatings Technology, 2008,202(18):4496-4502.[2] CHENG F J,WANG Y S,YANG T G. Microstructure and wear properties of Fe-VC-Cr7C3 composite coating on surface of cast steel [J]. Materials Characterization, 2008,59(4):488-492. [3] 宋杰, 张庆茂, 林晓聪, 等. 40Cr钢表面激光熔覆层的磨损性能[J]. 强激光与粒子束, 2008,20(1):21-25. SONG J, ZHANG Q M, LIN X C, et al. Wear performance of Fe-based alloy coating on the 40Cr steel treated by laser cladding [J]. High Power Laser and Particle Beams, 2008,20(1):21-25. (in Chinese)[4] VISWANATHAN A,SASTIKUMAR D,KUMAR H, et al. Formation of WC-iron silicide (Fe5Si3) composite clad layer on AISI 316L stainless steel by high power (CO2) laser [J]. Surface & Coatings Technology, 2009,203(12):1618-1623.[5] TOBAR M J,LVAREZ C,AMADO J M, et al. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel [J]. Surface & Coatings Technology, 2006, 200(22-23):6313-6317.[6] AMADO J M,TOBAR M J,ALVAREZ J C, et al. Laser cladding of tungsten carbides hardfacing alloys for the mining and mineral industry [J]. Applied Surface Science, 2009,255(10):5553-5556.[7] BADDOO N R. Stainless steel in construction: a review of research, applications, challenges and opportunities [J]. Constructional Steel Research,2008,64(11):1199-1206.[8] PAUL C P,KHAJEPOUR A. Automated laser fabrication of cemented carbide components [J]. Optics & Laser Technology, 2008,40(5):735-741.[9] XIE G ZH,LU Y J,HE Z Y, et al. Microstructure and corrosion properties of plasma-sprayed NiCr-Cr3C2 coatings comparison with different post treatment [J]. Surface & Coatings Technology, 2008,202(13):2885-2890.[10] 蒋振平, 田乃良. 激光熔覆含碳化钨的镍基合金[J]. 激光与红外, 2004,34(3):189-191. JIANG ZH P, TIAN N L. Laser cladding Ni-based alloy with WC [J]. Laser & Infrared, 2004,34(3):189-191. (in Chinese)[11] RADZIEJEWSKA J,SKRZYPEK S J. Microstructure and residual stresses in surface layer of simultaneously laser alloyed and burnished steel [J]. Materials Processing Technology, 2009,209(4):2047-2056.[12] 查莹,周昌炽,唐西南, 等. 激光熔覆镍基合金和陶瓷硬质相复合涂层性能的研究[J]. 中国激光,1999,26(10):947-950. CHA Y, ZHOU CH C, TANG X N,et al. Study of improvement of properties of laser cladding Ni super-alloy and WC composite layers [J]. Chinese Journal of Lasers, 1999,26(10):947-950. (in Chinese)[13] 涂义, 张永忠, 席明哲. 不锈钢表面激光熔覆镍基合金层研究[J]. 稀有金属, 2008,32(5):598-604. TU Y, ZHANG Y ZH, XI M ZH. Investigation of nickel-based alloys coating on stainless steel by laser cladding [J]. Chinese Journal of Rare Metals, 2008,32(5):598-604. (in Chinese)[14] CHEN H CH,XUA C Y,CHEN J, et al. Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear [J]. Wear, 2008,264(7-8):487-493.[15] ZHOU SH F,HUANG Y J,ZENG X Y. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot [J]. Applied Surface Science, 2008,254(10):3110-3119.[16] 李强, 张永忠, 李劲风, 等. 激光熔覆316L不锈钢涂层的结构与腐蚀性能[J]. 激光技术, 2004,28(3):237-240. LI Q, ZHANG Y ZH, LI J F, et al. Microstructure and corrosion performance of laser clad 316L stainless steel coating [J]. Laser Technology, 2004,28(3):237-240.[17] 樊丁,李强,张建斌. 激光熔覆FeNiCrAl合金涂层的组织与腐蚀性能[J]. 兰州理工大学学报, 2009,35(2):13-16. FAN D, LI Q, ZHANG J B. Microstructure and corrosion performance of laser melt-clad FeNiCrAl alloying coating [J]. Journal of Lanzhou University of Technology, 2009,35(2):13-16. (in Chinese)
0
浏览量
127
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构