浏览全部资源
扫码关注微信
上海理工大学 光电信息与计算机工程学院 上海,200093
收稿日期:2010-09-13,
修回日期:2010-11-18,
网络出版日期:2011-07-25,
纸质出版日期:2011-07-25
移动端阅览
杨晖, 郑刚, 张仁杰. 用动态光散射时间相干度法测量纳米颗粒粒径[J]. 光学精密工程, 2011,19(7): 1546-1551
YANG Hui, ZHENG Gang, ZHANG Ren-jie. Measurement of nanoparticle sizes by variance of temporal coherence of dynamic light scattering[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1546-1551
杨晖, 郑刚, 张仁杰. 用动态光散射时间相干度法测量纳米颗粒粒径[J]. 光学精密工程, 2011,19(7): 1546-1551 DOI: 10.3788/OPE.20111907.1546.
YANG Hui, ZHENG Gang, ZHANG Ren-jie. Measurement of nanoparticle sizes by variance of temporal coherence of dynamic light scattering[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1546-1551 DOI: 10.3788/OPE.20111907.1546.
针对传统动态光散射法测量纳米颗粒粒径算法复杂、速度慢、成本高等问题
提出了一种通过改变动态散射光信号时间相干度来测量纳米颗粒粒径的方法
并对其所采用的算法和测量系统进行研究。首先
介绍了动态光散射测量法的基本原理
并引出系统相干度的概念(包括时间相干因子和空间相干因子)。接着
从光电探测器的统计特性出发
通过对光子计数方差的分析得到散射光强波动的方差。然后
建立光强波动的方差与时间相干度的方程
并由该方程得到动态光散射信号的衰减线宽。最后
根据Stokes-Einstein公式计算出纳米颗粒的粒径。对粒径为30
50
100 nm
溶液透光率为96%的乳胶球标准颗粒溶液进行了实验
结果表明:本文提出的测量法其测量均值误差和重复性误差的平均值分别为1.84%和1.76%
满足均值误差和重复性误差小于2%的国标要求。
A measurement method of nanoparticle sizes by the variance of temporal coherence of dynamic light scattering was presented to resolve problems of complex algorithms
slow operation
and high costs of traditional dynamic light scattering nano-particle measurement systems and its algorithm and measurement system were studied
respectively. Firstly
the photon correlation spectroscopic theory of dynamic light scattering measurement was introduced
and the concept of coherence degree which includes a temporal coherence factor and a spatial coherence factor was deduced. Then
based on the statistical properties of photoelectric detectors
the variance of the fluctuation of scattering intensity was deduced through analysis of the variance of photon counting. The equations of the variance of intensity fluctuations and the temporal coherence degree were established
and the decay width of a dynamic light scattering signal was obtained by the equations. Finally
the particle diameters of the nano-particles were calculated by the Stokes-Einstein equation.Furthermore
the latex particle sample solution with the diameters of 30
50
100 nm and the transmission of 96% was used as the standard sample to be tested in an experiment. The results show that the average values of the measurement error and repeatability error of the new method are 1.84% and 1.76%
respectively
which satisfies the national standard that these errors should be less than 2%
respectively.
PECORA R. Dynamic light scattering measurement of nanometer particles in liquids[J]. J. of Nanoparticle Research 2000,2:123-131.[2] BORSALI R, PECORA R. Soft Matter Characterization[M]. Springer Netherlands, 2008.[3] YANG H,ZHENG G,LI M CH, et al. A discussion of noise in dynamic light scattering for particle sizing[J]. Part. Part. Syst. Charact., 2009,25(5-6):406-413. [4] SHEN J,ZHENG G,SUN G Q, et al. Fractal character of dynamic light scattering of particles[J]. Part. Part. Syst. Charact, 2004,21:411-414.[5] YANG H, ZHENG G, LI M C. The optimum detector aperture in photon correlation spectroscopy experiments[J]. Lasers in Engineering, 2007,17(1-2):75-82.[6] PURCELL E M. The question of correlation between photons in coherent light rays[J]. Nature, 1956,178(4548):1449-1450.[7] BROWN R H, TWISS R Q. Interferometry of the intensity fluctuations in light. I. basic theory: the correlation between photons in coherent beams of radiation. Proc. R. Soc. London A, 1957,242(1230):300-324.[8] PROC L M. Fluctuations of photon beams: the distribution of the photo-electrons[J]. Proceedings of the Physical Society, 1959,74(1):233-243.[9] GLAUBER R J. Coherent and incoherent states of the radiation field[J]. Phys. Rev. 1963,6(131):2766-2788.[10] ARECCHI F T. Measurement of the statistical distribution of gaussian and laser sources[J]. Phys. Rev. Lett., 1965,24(15):912-916.[11] JOHNSON F A,JONES R,MCLEAN T P, et al. Dead-time corrections to photon counting distributions[J]. Phys. Rev. Lett., 1966,13(16):589-592.[12] JAKEMAN E,PIKE E R. The intensity-fluctuation distribution of Gaussian light[J]. J. Phys. A. 1968(1):128-138.[13] PROVDER T. Challenges in particle size distribution measurement past, present and for the 21st century[J]. Progress Inorganic Coatings, 1997,32:143-153.[14] BERNE B J,PECORA R. Dynamic Light Scattering-with Applications to Chemistry [M]. New York:Biology & Physics. John Wiley & Sons, Inc.,1976.[15] GOODMAN J W. Statistical Optics [M]. New York: John Wiley and Sons, 1985.[16] 杨晖, 郑刚, 李孟超,等. 高浓度超细颗粒的后向光子相关光谱测量技术研究[J]. 光子学报, 2009,38(1):179-183. YANG H, ZHENG G, LI M CH, et al. The study of back scattering PCS for particle sizing in high concentrated suspension[J]. Acta Photonica Sinica, 2009,38(1):179-183. (in Chinese)[17] 杨晖,郑刚,王雅静. 用动态光散射现代谱估计法测量纳米颗粒[J]. 光学 精密工程, 2010,18(9):1996-2001. YANG H, ZHENG G, WANG Y J. Measurement of nano-particle by modern spectral estimation of dynamic light scattering[J]. Opt. Precision Eng., 2010,18(9):1996-2001. (in Chinese)[18] GB/T 19627-2005/ISO 13321:1996, Particle size analysis-photon correlation spectroscopy[S]. 2005-08-01.[19] YANG H, ZHENG G, LI M CH. A new cheaper dynamic light scattering particle sizing method using counting board[J]. Lasers in Engineering, 2008,18(3-4):153-161.
0
浏览量
600
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构