浏览全部资源
扫码关注微信
1. 长春工业大学 机电工程学院,吉林 长春,130012
2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2010-11-03,
修回日期:2010-11-24,
网络出版日期:2011-07-25,
纸质出版日期:2011-07-25
移动端阅览
辛宏伟, 关英俊, 李景林, 杨利伟, 董得义, 张学军. 大孔径长条反射镜支撑结构的设计[J]. 光学精密工程, 2011,19(7): 1560-1568
XIN Hong-wei, GUAN Ying-jun, LI Jing-lin, YANG Li-wei, DONG De-yi, ZHANG Xue-jun. Design of support for large aperture rectangular mirror[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1560-1568
辛宏伟, 关英俊, 李景林, 杨利伟, 董得义, 张学军. 大孔径长条反射镜支撑结构的设计[J]. 光学精密工程, 2011,19(7): 1560-1568 DOI: 10.3788/OPE.20111907.1560.
XIN Hong-wei, GUAN Ying-jun, LI Jing-lin, YANG Li-wei, DONG De-yi, ZHANG Xue-jun. Design of support for large aperture rectangular mirror[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1560-1568 DOI: 10.3788/OPE.20111907.1560.
为了使大孔径长条形空间反射镜支撑结构同时满足高刚度、高强度和良好的热尺寸稳定性要求
建立了反射镜支撑系统的模态解析数学模型
并对该模型所描述的反射镜沿各轴向的平动和转动模态特性进行了研究。根据模态解析解得出3个支撑点确保质量分布相对均匀时
系统的动-静态刚度最大的结论
并结合有限元分析技术确定了反射镜的支撑位置。此外
在支撑结构中设置了柔性环节
改善了反射镜在各工况下所受的应力环境以确保其光学性能。通过优化柔性铰链最薄处的厚度和圆弧半径两个参数来调节反射镜的面形精度
使面形精度满足设计要求。分析及试验结果表明:柔性铰链最薄处厚度为4 mm
圆弧半径为2 mm时
反射镜在重力和4℃均匀温升工况下的面形精度RMS值均优于12.3 nm;组件实际一阶固有频率为146 Hz
与有限元分析结果的误差小于5%;柔性支撑结构动态应力响应远小于材料的屈服极限
完全满足反射镜结构系统的设计要求。
To design a large aperture rectangular mirror with high stiffness
high strength and good thermal dimensional stability precisely
an analytical mathematical model of the mirror supporting system was established and its modal characteristics were investigated. Firstly
the support location of the mirror was determined according to the conclusion obtained by modal analytical solution that the dynamic and static stiffness is the highest when the three supports keep the mass distribution relatively homogenous. Then
the support structure was analyzed in detail by Finite Element Method(FEM) and a new type of flexible support was presented. By adjusting two parameters
the thinnest thickness and the arc radius of a flexible hinge
the surface figure accuracy of the mirror was modified. Finally
the modal analysis of mirror component was performed. Analytical and experimental results indicate that the surface figure accuracy of the mirror can reach RMS 12.3 nm under the load case of gravity and 4℃ uniform temperature rise
respectively
when the thickness of the flexible hinge is 4 mm and its circular radius is 2 mm. Moreover
its first order natural frequency is 146 Hz
which shows an error under 5% compared to FEA results. Research demonstrates that the mirror structure satisfies all design indexes.
张科科,阮宁娟,傅丹鹰. 国外空间用三反离轴相机发展分析与思考[J]. 航天返回与遥感, 2008,29(3):63-70. ZHANG K K, RUAN N J, FU D Y. Analysis and consideration of development of overseas space off-axis TMA system camera [J]. Spacecraft Recovery & Remote Sensing, 2008,29(3):63-70.[2] 张学军,李志来,张忠玉. 基于SiC材料的空间相机非球面反射镜结构设计[J]. 红外与激光工程,2007,36(5):577-582. ZHANG X J, LI ZH L, ZHANG ZH Y. Space telescope aspherical mirror structure design based on SiC material [J]. Infrared and Laser Engineering, 2007,36(5):577-582. (in Chinese)[3] 任建岳,陈长征,何斌. SiC和SiC/Al在TMA空间遥感器中的应用[J]. 光学 精密工程,2008,16(12):2537-2543. REN J Y, CHEN CH ZH, HE B. Application of SiC and SiC/Al to TMA optical remote sensor [J]. Opt. and Precision Eng., 2008,16(12):2537-2543. (in Chinese)[4] BRET-DIBAT T,ALBOUYS V,BERTHON J, et al. Tests of a high resolution three mirrors anastigmat telescope[J].SPIE,1999,3870:126-137.[5] LENCIONI D E, DIGENIS C J. Design and performance of the EO-1 advanced land imager, Florence, Italy, September[J].SPIE,1999,3870:269-280.[6] RISSE S,GEBHARDT A,DAMM C, et al. Novel TMA telescope based on ultra precise metal mirrors[J].SPIE,2008,7010:701016-1-701016-8.[7] 鲍赫,李志来. 长条形SiC反射镜轻量化及支撑结构的设计[J]. 光学技术,2008,34(4):593-596. BAO H, LI ZH L. Design of the strip SiC mirror supporting structure and lightweight [J]. Optical Technique, 2008,34(4):593-596. (in Chinese)[8] 郭疆. 大口径空间遥感相机主反射镜支撑设计[J]. 光学 精密工程,2008,16(9):1642-1647. GUO J. Design of support for primary mirror of space remote sensing camera[J]. Opt. Precision Eng., 2008,16(9):1642-1647. (in Chinese)[9] 李志来,薛栋林,张学军. 长焦距大视场光学系统的光机结构设计[J]. 光学 精密工程,2008,16(12):2485-2490. LI ZH L, XUE D L, ZHANG X J. Optical and mechanical design for long focal length and wide-field optical system [J]. Opt. Precision Eng., 2008,16(12):2485-2490. (in Chinese)[10] YAN Y, JIN G,YANG H B, Design and analysis of large spaceborne light-weighted primary mirror and its support system[J].SPIE,2007,6721:67210V-1-67210V-7.[11] 闫勇,王栋,金光. 大口径SiC反射镜组件研制技术[J]. 光电工程,2010,37(6):108-112. YAN Y, WANG D, JIN G. Design and fabrication technology large aperture SiC mirror assembly [J]. Opto-Electronic Engineering, 2010,37(6):108-102. (in Chinese)[12] 王忠素,翟岩,梅贵,等. 空间光学遥感器反射镜柔性支撑的设计[J]. 光学 精密工程,2010,18(8):1833-1841. WANG ZH S, ZHAI Y, MEI G, et al. Design of flexible support structure of refector in space remote sensor[J]. Opt. Precision Eng., 2010,18(8):1833-1841. (in Chinese)[13] 孙宝玉. 光学反射镜柔性支撑结构尺寸稳定性分析[J]. 光电工程,2009,36(9):142-145. SUN B Y. Stability analysis on the dimension of flexible supporting structure of the optical reflector [J]. Opto-Electronic Engineering, 2009,36(9):142-145. (in Chinese)
0
浏览量
815
下载量
26
CSCD
关联资源
相关文章
相关作者
相关机构