浏览全部资源
扫码关注微信
1. 清华大学 工程物理系 北京,100084
2. 中国工程物理研究院 电子工程研究所,四川 绵阳,621900
收稿日期:2010-10-19,
修回日期:2010-11-24,
网络出版日期:2011-07-25,
纸质出版日期:2011-07-25
移动端阅览
代刚, 李枚, 苏伟, 邵贝贝. 微惯性测量单元的误差整机标定和补偿[J]. 光学精密工程, 2011,19(7): 1620-1626
DAI Gang, LI Mei, SU Wei, SHAO Bei-bei. Error calibration and compensation of entire micro inertial measurement unit[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1620-1626
代刚, 李枚, 苏伟, 邵贝贝. 微惯性测量单元的误差整机标定和补偿[J]. 光学精密工程, 2011,19(7): 1620-1626 DOI: 10.3788/OPE.20111907.1620.
DAI Gang, LI Mei, SU Wei, SHAO Bei-bei. Error calibration and compensation of entire micro inertial measurement unit[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1620-1626 DOI: 10.3788/OPE.20111907.1620.
提出了微惯性测量单元(MIMU)在高动态、高过载复杂应用条件下的误差整机标定和补偿方法。首先
建立了高动态
高过载复杂应用条件下MIMU的误差模型
该模型包括了结构误差
传感器安装误差和MEMS惯性传感器在复杂条件对精度影响较大的误差项
指零位温度漂移、互耦误差、刻度因子非线性和微陀螺加速度效应误差;根据模型提出了整机标定补偿方法
该方法可以标定MIMU的63个误差系数
并且不需要对单个传感器进行标定。然后
介绍了利用最小二乘法对模型进行误差系数标定的方法和步骤
并对自研的MIMU进行了标定。 最后
通过飞行实验对MIMU进行了验证。结果表明
使用该方法使定位精度提高了一个数量级
基本满足MIMU在高动态、高过载条件下的精度要求。
The entire calibration and compensation method of a Miniature Inerial Measurement Unit(MIMU) in high dynamic and overload complicate environments was proposed. Firstly
an error model applied to the complicate application environments was established
which consists of the structure errors
installation misalignment errors and the errors of the MEMS sensors including zero output drift
temperature drift
cross-axis error
nonlinear scale factor error and acceleration effect error of gyroscope. Based on the model
the entire calibration and compensation method was proposed to calibrate 63 error coefficients without calibration of each MEMS inertial sensor separately. Then
the generalized least square algorithm was used to calibrate and calculate the error coefficients. Finally
a MIMU was developed for a flight experiment and was calibrated with this proposed method. Experimental results indicate that the positioning accuracy is improved by 1 order of magnitude. It can satisfy the high dynamic and overload requirements of the MIMU.
CHOI B D,PARK S, KO H, et al. The first sub-deg/HR bias stability, silicon-microfabricated gyroscope.Solid-State Sensors, Actuators and Microsystems, TRANSDUCER,2005:180-183.[2] SYED Z F,AGGARWAL P,GOODALL C, et al. A new multi-position calibration method for MEMS inertial navigation systems[J]. Meas. Sci. Technol. 2007,18:1897-1907.[3] FONG W T, KONG S,NEE A Y C. Methods for in-field user calibration of an inertial measurement unit without external equipment[J]. Meas. Sci. Technol. 2008,19:085202 (11pp).[4] 孙宏伟, 房建成, 盛蔚. 一种基于MEMS的微惯性测量单元标定补偿方法[J]. 北京航空航天大学学报, 2008,34(4):439-442. SUN H W, FANG J CH, SHENG W. Calibration-compensation method for micro inertial measurement unit based on MEMS[J]. Journal of Beijing University of Aeronautics and Astronautic,2008,34(4):439-442. (in Chinese)[5] 李杰, 洪惠惠, 张文栋. MEMS微惯性测量组合标定技术研究[J].传感技术学报,2008,21(7):85-89. LI J, HONG H H, ZHANG W D. Research on calibration techniques for MEMS micro inertial measurement unit[J]. Chinese Journal of Sensors and Actuators, 2008,21(7):85-89. (in Chinese)[6] LEE K I,TAKAO H,SAWADA K, et al. Analysis and experimental verification of thermal drift in a constant temperature control type three-axis accelerometer for high temperatures with a novel composition of Wheatstone bridge. Micro Electro Mechanical Systems, MEMS 2004:241-244.[7] FANG J CH, LI J L. Integrated model and compensation of thermal errors of silicon microelectromechanical gyroscope [J]. IEEE Transactions on Instrumentation and Measurement,2009,58(9):2923-2930.[8] FERGUSON M I,KEYMEULEN D, PEAY C, et al. Effect of temperature on MEMS vibratory rate gyroscope. Aerospace, IEEE Conference,2005:1-6.[9] 周斌. 微机械陀螺数字化技术研究. 北京:清华大学, 2003. ZHOU B. Study on digital technique of micromachined gyroscope. Beijing: Tsinghua University, 2003. (in Chinese)[10] DAI G, YU HM, SU W, et al. Systematic error analysis and modeling of MEMS close-loop capacitive accelerometer. 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2010:92-96.[11] 张荣辉, 贾宏光, 陈涛,等. 基于四元数法的捷联式惯性导航系统的姿态解算[J]. 光学 精密工程,2008,16(10):1963-970. ZHANG R H, JIA H G, CHEN T, et al. Attitude solution for strapdown inertial navigation system based on quaternion algorithm[J]. Opt. Precision Eng., 2008,16(10):1963-1970. (in Chinese)
0
浏览量
333
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构