浏览全部资源
扫码关注微信
哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨,150080
收稿日期:2010-09-06,
修回日期:2010-11-29,
网络出版日期:2011-07-25,
纸质出版日期:2011-07-25
移动端阅览
张广才, 付宜利, 王树国, 高文朋, 贾晓岚. T2加权人脑MR体数据的脑提取[J]. 光学精密工程, 2011,19(7): 1635-1642
ZHANG Guang-cai, FU Yi-li, WANG Shu-guo, GAO Wen-peng, JIA Xiao-lan. Human brain extraction from T2 weighted volumetric magnetic resonance images[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1635-1642
张广才, 付宜利, 王树国, 高文朋, 贾晓岚. T2加权人脑MR体数据的脑提取[J]. 光学精密工程, 2011,19(7): 1635-1642 DOI: 10.3788/OPE.20111907.1635.
ZHANG Guang-cai, FU Yi-li, WANG Shu-guo, GAO Wen-peng, JIA Xiao-lan. Human brain extraction from T2 weighted volumetric magnetic resonance images[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1635-1642 DOI: 10.3788/OPE.20111907.1635.
为了实现人脑T2加权MR图像的脑组织和非脑组织的分割
提出了一种基于三维形变曲面模型和数学形态学算法的MR T2图像脑提取方法。该方法分为两级提取:第一级提取依据脑解剖学知识
影像学知识及T2加权MR脑图像的组织在灰度直方图中的分布规律
应用三维形变曲面模型和区域生长实现脑的初级提取;第二级提取则根据图像的局部信息
应用六邻域结构元素对脑初级提取结果进行数学形态学处理
使脑提取结果更精确。实验结果表明
使用该方法对人脑T2加权MR数据进行脑提取的准确率能达到94%以上。算法性能评估证明本算法能够比较好地实现T2加权MR图像的脑提取。
For the segmentation of the non-brain tissues and brain tissues from the T2 weighted volumetric Magnetic Resonance Images (MRI)
an image extraction method including two levels was proposed to extract brain tissues based on deformable surface models and mathematical morphology. The first level was finished by deformable surface models and region growing according to the brain anatomic
imaging knowledge
and the distribution of MR brain tissues in intensity histogram; the second level was completed by using mathematical morphology to erode the outcome of the first level of brain extraction to obtain more precise results. The experimental results demonstrate that the accuracy rate of the human brain extraction from T2 weighted MRI can reach more than 94%. The algorithm performance evaluation proofs that the proposed method is effective on the extraction of brain tissues from T2 weighted MRIs.
RICHARD A. Biomedical Imaging, Visualization, and Analysis [M]. New York: Wiley-Liss, 2000.[2] YOON U C, KIM J S, KIM J S, et al.. Adaptable fuzzy C-means for improved classification as a preprocessing procedure of brain parcellation [J]. Digital Imaging, 2001, 14(2):238-240.[3] KIM J J, LEE M C, KIM J S, et al. Grey matter abnormalities in obsessive-compulsive disorder: statistical parametric mapping of segmented magnetic resonance images [J]. British Journal of Psychiatry, 2001,179:330-334.[4] SMITH S M. Fast robust automated brain extraction [J]. Human Brain Mapping, 2002,17:143-155.[5] ZHUANG A H, VALENTINO D J, TOGA A W. Skull-stripping magnetic resonance brain images using a model-based level set [J]. NeuroImage, 2006,32:79-92.[6] WANG L, CHEN Y J, PAN X H, et al. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy [J]. Neuroscience Methods, 2010,188:316-325.[7] 宋立伟,宋朝昀,庄天戈. 基于分水岭算法的磁共振脑图像自动分割 [J]. 上海交通大学学报,2003,37(11):1754-1756. SONG L W, SONG CH Y, ZHUANG T G. Watershed-based brain magnetic resonance image automated segmentation[J]. Journal of Shang Hai Jiao Tong University, 2003, 37(11):1754-1756. ( in Chinese)[8] KUO W F, LIN CH Y, SUN Y N. Brain MR images segmentation using statistical ratio: mapping between watershed and competitive Hopfield clustering network algorithms [J]. Computer Methods and Programs in Biomedicine, 2008,91:191-198.[9] SHATTUCK D W, SANDOR-LEAHY S R, SCHAPER K A, et al. Magnetic resonance image tissue classification using a partial volume model[J]. NeuroImage, 2001, 13:856-876.[10] 周显国, 陈大可, 苑森淼. 基于改进模糊聚类分析的医学脑部MRI 图像分割[J]. 吉林大学学报(工学版),2009,39(增2):381-385. ZHOU X G, CHEN D K, YUAN S M. Medical brain MRI images segmentation by improved fuzzy c-means clustering analysis[J]. Journal of JiLin University (Engineering and Technology Edition), 2009,39(Supp.2):381-385. ( in Chinese)[11] KANNAN S R. A new segmentation system for brain MR images based on fuzzy techniques [J]. Applied Soft Computing, 2008,8:1599-1606.[12] SIYAL M Y, YU LIN. An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI [J]. Pattern Recognition Letters, 2005,26:2052-2062.[13] 罗述谦,闫华,王萍. 从MRI体数据提取大脑表面形态的新方法[J]. 北京生物医学工程,2000,19(4):200-205. LUO SH Q, YAN H, WANG P. A new method of the extraction of brain surface form from volumetric magnetic resonance images[J]. Journal of Beijing Biomedical Engineering, 2000,19(4):200-205. ( in Chinese)[14] COHEN I, COHEN L D, AYACHE N. Using deformable surfaces to segment 3-D images and infer differential structures[J]. Image Understanding, 1992,56(2):242-263.[15] KELEMEN A, SZ'EKELY G, GERIG G. Elastic model-based segmentation of 3-D neurora- diological data sets[J]. IEEE Transactions on Medical Imaging, 1999,18(10):828-839.[16] 同武勤,凌永顺,黄超超,等. 数学形态学和小波变换的红外图像处理方法[J]. 光学 精密工程,2007,15(1):138-144. TONG W Q, LING Y SH, HUANG CH CH. Processing method of IR image based on mathematical morphology and wavelet transform[J]. Opt. Precision Eng., 2007,15(1):138-144. ( in Chinese)
0
浏览量
307
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构