浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械及物理研究所,吉林 长春,130033
收稿日期:2010-12-13,
修回日期:2011-02-15,
网络出版日期:2011-07-25,
纸质出版日期:2011-07-25
移动端阅览
陈向坚, 李迪, 白越, 续志军. 模糊神经网络在自适应双轴运动控制系统中的应用[J]. 光学精密工程, 2011,19(7): 1643-1650
CHEN Xiang-jian, LI Di, BAI Yue, XU Zhi-jun. Application of type-II fuzzy neural network to adaptive double axis motion control system[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1643-1650
陈向坚, 李迪, 白越, 续志军. 模糊神经网络在自适应双轴运动控制系统中的应用[J]. 光学精密工程, 2011,19(7): 1643-1650 DOI: 10.3788/OPE.20111907.1643.
CHEN Xiang-jian, LI Di, BAI Yue, XU Zhi-jun. Application of type-II fuzzy neural network to adaptive double axis motion control system[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1643-1650 DOI: 10.3788/OPE.20111907.1643.
为了更好地提高工艺加工平台的精确度
结合自适应控制与区间二型模糊神经网络理论设计了一个双轴运动控制系统。该系统通过控制两个场向永磁同步电机来定位
X-Y
双轴运动转子的位置
从而跟踪预设的蝶形曲线。针对由区间二型模糊神经网络的有限规则产生的不可避免的逼近误差和优化的参数向量等集中不确定性因素
设计了自适应集中不确定性估计律
并通过在线鲁棒补偿器处理集中不确定性的值。最后
通过TMS320C32数字信号处理器运行了本文提出的控制算法。实验结果验证了基于区间二型模糊神经网络设计的双轴运动控制系统的轨迹跟踪精确度较高。与一型模糊神经网络控制系统相比
区间二型模糊神经网络控制系统具有更好的控制性能
鲁棒性更强。
An adaptive double axis motion control system to improve the accuracy of processing platforms was designed by combining the adaptive technology and the interval type-II fuzzy neural network theory.The system controled two field oriented permanent magnet synchronous motors to locate the
X-Y
double axis motion rotor to track the butterfly contour. Meanwhile
a robust compensator was proposed to confront the Lumped uncertainty
including the inevitable approximation error due to the finite rules of the interval type-II fuzzy neural network
optimal parameter vectors and so on. Finally
the proposed control algorithm was implemented in a TMS320C32 digital signal processor. The experimental results indicate that the butterfly contour tracking performance of the double axis motion control system is improved significantly
and the control system based on the interval type-II fuzzy neural network is more robust than that based on the type-I fuzzy neural network for different uncertainties.
LIM H,SEO J W,CHOI C H. Position control of XY table in CNC maching center with nonrigid ballscrew. Pro.Amer.Control Conference,2000:1542-1546.[2] 郑晓虎,朱荻. 模糊神经网络在UV-LIGA工艺优化中的应用[J]. 光学 精密工程,2006,14(1):139-144. ZHENG X H,ZHU D. Application of fuzzy neural network to optimizing UV-LIGA process[J].Opt. Precision Eng., 2006,14(1):139-144. (in Chinese)[3] 张玲 瑄, 贾振元. 微细电火花加工放电状态逐级映射检测[J]. 光学 精密工程,2010,18(3):663-669. ZHANG L X, JIA ZH Y. Successive mapping detection of micro EDM discharge state[J]. Opt. Precision Eng., 2010,18(3):663-669. (in Chinese)[4] LIN F J,SHIEN H J,SHEN P H. An adaptive recurrent-neural network motion controller for X-Y table in CNC machine[J]. IEEE Transaction System Manufacture Cybern. B, Cybern, 2006,36(2):286-299.[5] LIU Z, ZHANG Y,WANG Y. A type-2 fuzzy switching control system for biped robots[J]. IEEE Transaction System Manufacture Cybernet. C, Application, 2007,37(6):1202-1213.[6] AKPOLAT Z H,ALTINORS A. Type-2 fuzzy reaching law speed control of an electric drive[J]. International Journal Model Simulation,2007,27(3):273-279.[7] HAGRAS H. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots[J]. IEEE Transaction Fuzzy System, 2004,12(4):524-539.[8] LIANG Q,MENDEL J M. Interval type-2 fuzzy logic systems: theory and design[J]. IEEE Transaction Fuzzy System,2000,8(5):535-550.[9] WANG C S,LEE T T. Dynamical optimal training for interval type-2 fuzzy neural network[J].IEEE Transaction System Manufacture Cybern. B, Cybern,2004,34(3):1462-1477.[10] 季宏丽, 裘进浩. 基于TMS320F2812 的悬臂梁振动半主动控制[J]. 光学 精密工程, 2009,17(1):126-131. JI H L, QIU J H.Semi-active control for structural vibration of cantilever beam based on TMS320F2812[J]. Opt. Precision Eng.,2009,17(1):126-131.(in chinese)
0
浏览量
106
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构