浏览全部资源
扫码关注微信
1. 第二炮兵工程学院,陕西 西安,710025
2. 北京信息高技术研究所 北京,100085
收稿日期:2010-09-22,
修回日期:2010-11-18,
网络出版日期:2011-07-25,
纸质出版日期:2011-07-25
移动端阅览
韩冰, 王永明, 孙继银. 加速的Fast Hessian多尺度斑点特征检测[J]. 光学精密工程, 2011,19(7): 1686-1694
HAN Bing, WANG Yong-ming, SUN Ji-yin. Accelerated Fast Hessian multi-scale blob feature detection[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1686-1694
韩冰, 王永明, 孙继银. 加速的Fast Hessian多尺度斑点特征检测[J]. 光学精密工程, 2011,19(7): 1686-1694 DOI: 10.3788/OPE.20111907.1686.
HAN Bing, WANG Yong-ming, SUN Ji-yin. Accelerated Fast Hessian multi-scale blob feature detection[J]. Editorial Office of Optics and Precision Engineering, 2011,19(7): 1686-1694 DOI: 10.3788/OPE.20111907.1686.
针对目前效率最高的斑点检测算法Fast Hessian算法的运行速度还无法满足目标识别与跟踪等对图像实时性要求较高的技术应用的问题
提出了加速的Fast Hessian多尺度斑点特征检测算法来进一步提升Fast Hessian的运行速度。该算法从减少算法过程中滤波运算量的角度入手
有选择地计算每个Octave首末两个尺度层中的采样点值;与原算法在这两层中求取所有采样点值的方法进行比较
提出的算法明显降低了滤波运算量
从而缩短了斑点检测过程的耗时。实验结果表明
加速的Fast Hessian算法在斑点检测结果上与原算法一致
而运行速度比原算法提升了近40%
因此更加适合实时应用。
As the origional Fast Hessian which is the most efficient blob feature detection algorithm can not meet requirements of those images in real-time applications to the target recognition
target tracking and so on
an accelerated Fast Hessian multi-scale blob feature detection algorithm is proposed to upgrade the detecting speed of the Fast Hessian. The basic idea of the proposed algorithm is to decrease the number of filter operations and to calculate selectively the values of sample points in the first and last scales for each Octave. Compared to the original one which calculates all the sample point values in these scales
the number of filter operations are distinctly decreased and the consuming time of detecting processing is also reduced. The experiments indicate that the accelerated Fast Hessian algorithm and the original one have the same detection results
but the implementation speed of the accelerated Fast Hessian is upgraded nearly 40% of the original one. It concludes that the accelerated algorithm is much more fit for real-time applications.
王永明, 王贵锦. 图像局部不变性特征与描述[M]. 北京: 国防工业出版社, 2010. WANG Y M, WANG G J. Image Local Invariant Features and Descriptors[M]. Beijing: National Defense Industry Press, 2010. (in Chinese)[2] LINDEBERG T. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention[J]. International Journal of Computer Vision, 1993,11(3):283-318.[3] LINDEBERG T. Scale-space theory: a basic tool for analysing structures at different scales[J]. Journal of Applied Statistics, 1994,21(2):224-270.[4] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.[5] 纪华, 吴元昊, 孙宏海,等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程, 2009,17(2):439-444. JI H, WU Y H, SUN H H, et al. SIFT feature matching algorithm with global information[J]. Opt. Precision Eng., 2009,17(2):439-444. (in Chinese)[6] 杨晓敏, 吴炜, 卿粼波,等. 图像特征点提取及匹配技术[J]. 光学 精密工程, 2009, 17(9):2276-2282. YANG X M, WU W, QING L B, et al. Image feature extraction and matching technology[J]. Opt. Precision Eng., 2009,17(9):2276-2282. (in Chinese)[7] 丁雪梅, 王维雅, 黄向东. 基于差分和特征不变量的运动目标检测与跟踪[J]. 光学 精密工程, 2007,15(4):570-576. DING X M, WANG W Y, HUANG X D. New method for detecting and tracking of moving target based on difference and invariant[J]. Opt. Precision Eng., 2007,15(4):570-576. (in Chinese)[8] BAY H, TUYTELAARS T, VAN GOOL L, et al. Surf: speeded up robust features. Proceeding of European Conference on Computer Vision, 2006:404-417.[9] BAY H. From wide-baseline point and line correspondences to 3D. Switzerland: ETH Zurich, 2006.[10] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding,2008,110(3):346-359.[11] CROW F. Summed-area tables for texture mapping. Proceeding of SIGGRAPH, 1984,18(3):207-212.[12] VIOLA P, JONES M. Robust real-time face detection[J]. International Journal of Computer Vision, 2004,57(2):137-154.
0
浏览量
191
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构