浏览全部资源
扫码关注微信
1. 同济大学 精密光学工程技术研究所 物理系,上海 200092
2. 同济大学 上海市特殊人工微结构材料与技术重点实验室 上海,200092
3. 同济大学 航空航天与力学学院 上海,200092
收稿日期:2010-03-01,
修回日期:2011-04-01,
网络出版日期:2011-08-25,
纸质出版日期:2011-08-25
移动端阅览
王新, 穆宝忠, 黄怡, 朱京涛, 王占山, 贺鹏飞. 13.5 nm Schwarzschild显微镜系统及成像实验[J]. 光学精密工程, 2011,19(8): 1709-1715
WANG Xin, MU Bao-zhong, HUANG Yi, ZHU Jing-tao, WANG Zhan-shan, He Peng-fei. 13.5 nm Schwarzschild microscope and imaging experiment[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1709-1715
王新, 穆宝忠, 黄怡, 朱京涛, 王占山, 贺鹏飞. 13.5 nm Schwarzschild显微镜系统及成像实验[J]. 光学精密工程, 2011,19(8): 1709-1715 DOI: 10.3788/OPE.20111908.1709.
WANG Xin, MU Bao-zhong, HUANG Yi, ZHU Jing-tao, WANG Zhan-shan, He Peng-fei. 13.5 nm Schwarzschild microscope and imaging experiment[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1709-1715 DOI: 10.3788/OPE.20111908.1709.
研制了工作波长为13.5 nm的Schwarzschild成像显微镜。从共轴两镜系统的基本理论出发
通过消除三级球差、彗差和像散设计了Schwarzschild物镜的光学初始结构
计算了物镜的光学传递函数。结果表明
物镜在0.3 mm视场内像方空间分辨率可达550 lp/mm。根据工作波长和镜面的入射角度设计了Mo/Si周期多层膜反射镜
制作了Schwarzschild显微镜光学元件
多层膜元件对13.5 nm波长的反射率为61%。为了消除可见光和紫外光对系统成像的影响
设计并制备了材料为Zr
Si和Si
3
N
4
的滤波片
该滤波片在13.5 nm处的透过率为21.1%。利用激光等离子体光源对60 lp/mm网格进行了成像实验
结果表明
系统在0.5 mm视场内的分辨率优于3 m
结论认为CCD探测器分辨率极限是影响成像实验分辨率的主要因素。
A Schwarzschild microscope working at 13.5 nm was developed. According to the theory of a coaxial two-mirror system
the optical structure of Schwarzschild objective was designed by eliminating third-order spherical aberrations
coma and astigmatism. Experiments show that the spatial resolution of the designed objective achieves 550 lp/mm within the field of 0.3 mm with respect to the calculation of modulation transfer function. Based on the working wavelength and incidence angle of lights
the Mo/Si multilayer optics with the reflectivity of 61% at 13.5 nm was designed and fabricated. In order to remove visible and ultraviolet lights
a filter with materials of Zr
Si and Si
3
N
4
was designed and fabricated
and the transmittance of 21.1% was obtained at 13.5 nm. With the purpose of demonstrating the resolution of microscope
the 60 lp/mm grid backlit by laser produced plasma was imaged via the Schwarzschild microscope on a Charge Coupled Device (CCD)
and the results show that the imaging system can offer the resolution of 3 m in the 0.5 mm field.It concludes that the resolution of imaging experiment is limited by the resolution of CCD camera.
RICHARDSON M, SHINOHARA K, TANAKA K A, et al.. Pulsed X-ray microscopy of biological specimens with laser plasma sources [J]. SPIE, 1992, 1741:133-141.[2] SEELY J F, HOLLAND G E, GIASSON J V, et al.. High-resolution imaging of laser-produced plasma at a wavelength of 130 by a normal-incidence multilayer-mirror microscope [J]. Appl. Opt, 1993, 32(31):6294-6302.[3] SEELY J F, HOLLAND G E, BOEHLY T. Uniformity of the soft-x-ray emissions from gold foils irradiated by OMEGA laser beams determined by a two-mirror normal-incidence microscope with multilayer coatings[J]. Appl. Opt, 1998, 37(7):1140-1145.[4] KINOSHITA H, YOSHIZUMI T, OSUGI M, et al.. Study on critical dimension of printable phase defects using an EUV microscope [J]. Microelectron. Eng, 2009, 86:505-508.[5] NAULLEAU P P, CHRISTOPHER N A, DEAN K, et al.. Advanced resist testing using the SEMATECH Berkeley extreme ultraviolet microfield exposure tool [J]. J. Vac. Sci. Technol. B, 2007, 25(6):2132-2135.[6] FARYS V, SCHIAVONE P, POLACK F, et al.. Highly sensitive detection technique of buried defects in extreme ultraviolet masks using at-wavelength scanning dark-field microscopy [J]. Appl. Phys. Lett, 2005, 87:024102.[7] BARKUSKY F, PETH C, BAYER A, et al.. Direct photo-etching of poly (methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source [J]. J. Appl. Phys, 2007, 101:124908.[8] BARKUSKY F, PETH C, MANN K, et al.. Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective [J]. Rev. Sci. Instrum, 2005, 76:105102.[9] BARKUSKY F, BAYER A, PETH C, et al.. Direct Photo-Etching of PMMA by Focused EUV radiation from a compact laser plasma source [J]. SPIE, 2008, 6879:68791M: 1-10.[10] 王占山, 曹健林, 陈波,等. 18.2 nm Schwarzschild显微成像系统初步研究[J]. 光学学报, 1996, 16:531-536. WANG ZH SH, CAO J L, CHEN B, et al.. Preliminary investigation of a Schwarzschild microscope system at 18.2 nm [J]. Acta Optica Sinica, 1996, 16:531-536. (in Chinese)[11] JIN CH SH, WANG L P, ZHANG L CH, et al.. Development of an experimental EUVL system [J]. SPIE, 2007, 6724:1-6.[12] WANG ZH J, PAN J H. Reflective optical systems for EUV lithography . United States Patent, 2001, US 6331710 B1.[13] MARSHALL F J, ALLEN M M, KNAUER J P, et al.. A high-resolution x-ray microscope for laser-driven planar-foil experiments[J]. Rev. Sci. Instrum, 1998, 75(4):1118-1124.
0
浏览量
348
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构