浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院 研究生院,北京 100039
收稿日期:2010-11-22,
修回日期:2011-01-25,
网络出版日期:2011-08-25,
纸质出版日期:2011-08-25
移动端阅览
贾建禄, 王建立, 赵金宇, 王鸣浩, 曹景太. 基于FPGA的自适应光学系统波前处理机[J]. 光学精密工程, 2011,19(8): 1716-1722
JIA Jian-lu, WANG Jian-li, ZHAO Jin-yu, WANG Ming-hao, Cao jin-tai. Adaptive optical wave-front processor based on FPGA[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1716-1722
贾建禄, 王建立, 赵金宇, 王鸣浩, 曹景太. 基于FPGA的自适应光学系统波前处理机[J]. 光学精密工程, 2011,19(8): 1716-1722 DOI: 10.3788/OPE.20111908.1716.
JIA Jian-lu, WANG Jian-li, ZHAO Jin-yu, WANG Ming-hao, Cao jin-tai. Adaptive optical wave-front processor based on FPGA[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1716-1722 DOI: 10.3788/OPE.20111908.1716.
针对大型地基高分辨率成像望远镜对自适应光学系统波前处理规模的需求
设计了基于现场可编程门阵列(FPGA)的高速大单元自适应波前处理系统
给出了设计方案
实施过程和测试结果。提出的基于FPGA的自适应光学系统波前处理机
在软件上采用FPGA对整个系统进行数据配置和调控
实现多路D/A数据同时传输和转换。同时
采用FPGA作为波前处理运算中的图像预处理和波前子孔径斜率计算的核心器件
在满足波前处理精度的前提下
缩短了波前处理延时
提高了波前处理能力
波前处理可达2 000 frame/s。在硬件上
采用波前处理主板与可扩展的波前处理子板相结合的形式来提高系统的输出能力。每块波前处理子板的校正量输出为120路
波前处理主板的最大扩展能力为10块
整个系统可实现1 200路校正量的输出。
In accordance with the need of a larer ground-based high resolution imaging telescope for adaptive optical wave-front processing
an Adaptive Optical(AO) wave-front processing system with larger calculation and thousands of units was designed based on the Field Programming Gate Array(FPGA) and its operation scheme
implement processing and tested results were given. At the software
the FGPA was used to configure and control data and to realize the conversion and transmission of multi-channel D/A data synchronously. Meanwhile
the FPGA was taken as a key element to preprocess the image and calculate the wave-front gradient of a sub-aperture.With satisfied wave-front processing precisions
it shortens wave-front processing delay and improves the ability of wave-front processing. Results demonstrate that the system can achieve the wave-front processing in 2 000 frame/s. At the hardware
this system combined the wave-front processing host board and wave-front processing sub board to improve the output ability of the system. As each wave-front processing sub board can promote the output of 120 road and the maximum expansion capacity of the main board is 10
the system can reach the momentum of the output in 1 200 road.
王建立,陈涛,张景旭,等. 地基高分辨率光电成像望远镜总体需求及关键技术分析[J]. 光学 精密工程,2008,16(5): 2-16 WANG J L, CHEN T, ZHANG J X. General requirements and key technologies for the ground-based high resolution EO imaging telescope[J].Opt. Precision Eng., 2008, 16(5):2-16.(in Chinese)[2] KEPA K,COBUM D, DAINTY J C,et al.. High Speed Optical Wavefront Sensing with Low Cost FPGAs. [J]. SPIE,2008,8:87-93.[3] LUIS F R R,VIERA T, JOSE V. Gigante, et al.. FPGA adaptive opics system test bench. [J]. SPIE,2005,5903: 59030D1-9.[4] BASDEN A G,ASSEMAT F, BUTTERLEY T, et al.. Acceleration of adaptive optics simulations using programmable logic[J]. SPIE,2005,1-6. [5] GOODSELL S J,FEDRIGO E,DIPPER N A,et al.. FPGA developments for the SPARTA project.[J]. SPIE,2005,5903: 59030G1-12.[6] GOODSELL S J, GENG D,FEDRIGO E,et al.. FPGA developments for the SPARTA project: Part 2.[J]. SPIE,2006,6272: 6272411-12.[7] GOODSELL S J,GENG D,YOUNGER E J,et al.. FPGA developments for the SPARTA project: Part 3 [J]. SPIE,2007,6691: 6691031-12.[8] 饶长辉,姜文汉,张雨东,等. 云南天文台1.2 m望远镜61单元自适应光学系统[J]. 量子电子学报,2006,23(3):295-302. RAO CH H, JIANG W H, ZHANG D Y, 61-element adaptive optical system for 1.2 m telescope of Yunnan Observatory[J].Chinese Journal of Quantum Electronics.2006, 23(3):295-302(in Chinese)[9] http://www.xilinx.com/products/v4qv/lx.htm[10] 郑文佳,王春鸿,姜文汉,等. 基于脉动阵列的自适应光学实时波前处理机设计[J]. 光电工程,2008,35(5): 44-49. ZHEN W J, WANG CH H, JIANG W H. Design and analysis of real-time adaptive optics wave-front processor based on systolic array.[J]. Opto-Electronic Engineering,2008,35(5):44-49.(in Chinese)
0
浏览量
809
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构