浏览全部资源
扫码关注微信
上海大学 机电工程与自动化学院 上海,200072
收稿日期:2010-12-10,
修回日期:2011-02-15,
网络出版日期:2011-08-25,
纸质出版日期:2011-08-25
移动端阅览
刘树林, 许小勇, 翟宇毅, 刘彦峰, 李余珍. 振动模态对压电发电机陶瓷片粘贴位置的影响[J]. 光学精密工程, 2011,19(8): 1801-1809
LIU Shu-lin, XU Xiao-yong, Zhai Yu-yi, LIU yan-feng, LI yu-zhen. Effect of vibration modes on positions of piezoelectric ceramic patches for cantilever generators[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1801-1809
刘树林, 许小勇, 翟宇毅, 刘彦峰, 李余珍. 振动模态对压电发电机陶瓷片粘贴位置的影响[J]. 光学精密工程, 2011,19(8): 1801-1809 DOI: 10.3788/OPE.20111908.1801.
LIU Shu-lin, XU Xiao-yong, Zhai Yu-yi, LIU yan-feng, LI yu-zhen. Effect of vibration modes on positions of piezoelectric ceramic patches for cantilever generators[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1801-1809 DOI: 10.3788/OPE.20111908.1801.
通过对压电单晶悬臂梁振动发电机陶瓷片建模及理论计算
分析了一阶振型与二阶振型状态下陶瓷片不同贴片位置与振动发电机发电能力的关系
利用欧拉伯努利梁模型并通过电机开路电压、短路电流及LED照明试验
得到了最佳贴片位置。试验表明在一阶模态时
陶瓷片贴于悬臂梁根部的电机能够获得最大的发电量
对4种不同贴片位置电机的发电试验显示
陶瓷片贴于根部的电机其开路电压及短路电流分别是其他电机的4倍以上
驱动的LED功率为其他电机的10倍以上。而对于二阶振型
陶瓷片贴于悬臂梁中间位置的电机发电量最大
贴于根部位置的电机次之
6种不同贴片位置电机的发电试验表明
前者开路电压、短路电流分别为后者的1.2倍和1.9倍以上
两者驱动的LED功率相差1.4倍以上。试验结果与计算结果均表明:一、二阶模态时悬臂梁最佳贴附位置分别是根部和中间位置
设计时需根据不同振型选择陶瓷片最佳粘贴位置。
By modeling and calculating the piezoelectric ceramic patches of cantilever generators
the effects of different positions of the piezoelectoic patches on the generation ability of the generators were analyzed and the optimum positions of the piezoelectric ceramic patches under the first and second vibration modes were obtained with Euler-Bernoulli model and by testing the open circuit voltages
short-circuit currents of generators and the performance of LED lighting. Experiments indicate that the generators show the optimum performance under the first vibration mode when the piezoelectric ceramic patches locate at the root of the cantilever. Its opening voltage and short current are 4 times and LED power is 10 times of experimental data of other three generators. Moreover
the generation ability is investigated under the second vibration mode. When the ceramic patch respectively locates at the middle and the root of cantilever
the generation ability of the former is superior to that of the latter
and the opening voltage and short current of the former are 1.2 and 1.9 times those of latters respectively through six generator experiments. In addition
LED power of the former is 1.4 times those of the others.It points out that the piezoelectric ceramic patches should be located at the root of beam under the first vibration mode and at the middle of beam under the second mode to improve the generation efficiency.
PRIYA S,INMAN D J. Energy Harvesting Technologies [M]. Springer, 2009:373-374.[2] 唐可洪,阚君武,朱国仁,等. 遥控器用压电发电装置的供电特性[J]. 光学 精密工程, 2008,16(1):92-96. TAMG K H, KAN J W, ZHU G R, et al.. Power-supply perfoemance of piezoelectric generator for remote control[J]. Opt. Precision Eng., 2008,16(1):92-96.(in Chinese)[3] 袁江波,单小彪,谢涛,等. 悬臂梁单晶压电发电机的实验[J]. 光学 精密工程.2009,17(5):1073-1076. YAN J B, SHAN X H, XIE T, et al.. Experiment of monocrystal piezoelectric generator with cantilever beam structure[J]. Opt. Precision Eng.. 2009,17(5):1073-1076.(in Chinese)[4] NATHAN S S, JOSEPH A P. Energy scavenging with shoe-mounted piezoelectrics[J].Micro,IEEE.2001,21(3):30-42.[5] STEVEN W A, CHRISTOPHER P T, DAVID L C, et al.. Energy Harvesting Wireless Sensors for Helicopter Damage Tracking . Proceedings of AHS International Forum, Phoenix, US: HUMS, 2006:1-6.[6] WANG Z L, SONG J H. Piezoelectric nanogen- erators based on zinc oxide nanowire arrays[J]. Science, 2006,312(5771):242-246.[7] HENRY A S, DANIEL J I,GYUHAE P. Comparison of piezoelectric energy harvesting devices for recharging batteries[J]. Journal of Intelligent Material Systems and Structures. 2005,16(10):799-807.[8] 阚君武,唐可洪,任玉,等. 压电单晶梁发电机的能量效率[J]. 光学 精密工程.2008,16(12):2398-2405. KAN J W, TANG K H, REN Y, et al.. Energy efficiency of piezoelectric monomorph cantilever generator[J]. Opt. Precision Eng., 2008,16(12):2398-2405.(in Chinese)[9] 阚君武,唐可洪,王淑云,等. 压电悬臂梁发电装置的建模与仿真分析[J]. 光学 精密工程.2008,16(1):71-75. KAN J W, TANG K H, WANG SH Y, et al.. Modeling and simulation of piezoelectric cantilever generators [J]. Opt. Precision Eng.. 2008,16(1):71-75.(in Chinese)[10] 袁江波, 谢涛, 单小彪,等. 复合型悬臂梁压电振子振动模型及发电试验研究[J]. 机械工程学报.2010,46(9):87-91. YAN J B, XIE T, SHAN X H, et al.. Vibrated model and experiments of multiple piezoelectric cantilevers in energy harvesting [J]. Journal of mechanical engineering, 2010,46(9):87-91.(in Chinese)[11] DENIS B, LUCIANO M, SASˇA Z, et al.. Vibration energy scavenging via piezoelectric bimorphs of optimized shapes [J]. Microsyst Technol.2010,16(5):657-668.[12] CHOI W J, JEON Y, JEONG J H, et al.. Energy harvesting MEMS device based on thin film piezoelectric cantilevers[J]. J Electroceram,2006,17(2):543-548.[13] JORDI B P, MANEL P V. Electromechanical Model of a Multi-layer Piezoelectric Cantilever . Proceedings of 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-electronics and Miro-Systems. Como, Italy,ICMMSE:2006: 1-7.[14] CHEN S N., WANG G J, ChIEN M C. Analytical modeling of piezoelectric vibration-induced micro power generator[J]. Mechatronics, 2006,7(16):379-387.[15] ERTURK A, INMAN D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J]. Smart Materials and structures. 2009,18(2):1-18.
0
浏览量
611
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构