浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春,130033
2. 中国科学院 研究生院,北京 100039
3. 长春理工大学 机电工程学院,吉林 长春,130022
收稿日期:2010-09-26,
修回日期:2011-01-11,
网络出版日期:2011-08-25,
纸质出版日期:2011-08-25
移动端阅览
杜新, 张平, 刘永顺, 吴一辉. 基于PDMS和玻璃材料的毛细管被动阀临界压力分析[J]. 光学精密工程, 2011,19(8): 1852-1858
DU Xin, ZHANG Ping, LIU Yong-shun, WU Yi-hui. Burst pressure of capillary burst valve based on glass and PDMS[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1852-1858
杜新, 张平, 刘永顺, 吴一辉. 基于PDMS和玻璃材料的毛细管被动阀临界压力分析[J]. 光学精密工程, 2011,19(8): 1852-1858 DOI: 10.3788/OPE.20111908.1852.
DU Xin, ZHANG Ping, LIU Yong-shun, WU Yi-hui. Burst pressure of capillary burst valve based on glass and PDMS[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1852-1858 DOI: 10.3788/OPE.20111908.1852.
针对现有的数值仿真方法不能够准确地计算矩形截面毛细阀用亲水性很好的玻璃作盖板时的临界压力
提出了一种分析复合壁面毛细管被动阀临界压力的方法。使用Surface Evolver(SE)自由软件
通过设置和实际流动相符的边界条件
并监测在扩张段入口处接触角的变化范围
实现了对由玻璃盖板和PDMS微通道构成的被动阀的临界压力的计算。此时
接触线应该设置为可以进入到扩张段的侧壁上
而不能固定在扩张段入口处。对于深度为25 m
宽深比为2
4
8
16的毛细管被动阀
得到的临界压力分别为0.77
0.45
0.33
0.24 kPa。仿真结果和转台实验结果基本相符
证实了SE方法的有效性。文中分析了接触角对毛细阀有效性的影响
指出当通道和平板材料的接触角之和大于90时
毛细阀才能控制流动。
As the current simulation methods for capillary burst valves can not exactly calculate the burst pressure when the passive valve is limited by a glass flat cover with good hydrophilicity
a method to analyze the critical pressure of the passive value was proposed. The Surface Evolver (SE) was used to simulate the burst pressure of the microvalve composed of a glass cover and PDMS microchannels by setting the properly boundary conditions and monitoring the variation of the contact angle at the entrance of expansion section.In simulation
the liquid contact line should be set up the entrance of expansion section and come into the expansionary walls that connect the glass cover. Experiments show that the capillary burst pressures are 0.77
0.45
0.33 and 0.24 kPa
respectively
for the microvalves with the depth of 25 m and the aspect of 2
4
8 and 16. The obtained simulation data are well in agreement with that obtained by a rotating platform. The effect of the contact angle for the capillary burst valve was also discussed
which points out that the valves do work until the sum of the contact angles on both the flat cover and the channel wall is greater than 90.
DUCRE J, HAEBERLE S, LUTZ S, et al.. The centrifugal microfluidic Bio-Disk platform[J]. Micromech. Microeng., 2007,17 (7):103-115.[2] SIEGRIST J,GORKIN R,CLIME L, et al.. Serial siphon valving for centrifugal microfluidic platforms[J]. Microfluid Nanofluid., 2010,9(1):55-33.[3] GLI`ERE A, DELATTRE C. Modeling and fabrication of capillary stop valves for planar microfluidic systems[J]. Sens. Actuators A: Phys., 2006,130-131: 601-608.[4] MAN P F, MASTRANGELO C H, BURNS M A, et al.. Microfabricated capillary driven stop valves and sample injector, in: MEMS Conference, Heidelberg, Germany, January 25-29, 1998.[5] LEU T S, CHANG P Y. Pressure barrier of capillary stop valves in micro sample separators[J]. Sens. Actuators A: Phys.,2004,115(2-3): 508-515.[6] CHEN J M, HIANG P C, LIN M G. Analysis and experiment of capillary valves for microfluidics on a rotating disk[J]. Microfluid Nanofluid, 2008,4(5):427-437.[7] CHO H, KIM H Y, KANG J Y, et al.. How the capillary burst microvalve works[J]. J. Colloid Interface Sci.,2007,306(2):379-385.[8] ZENG J, BANERJEE D, DESHPANDE M, et al.. Design analysis of capillary burst valves in centrifugal microfluidics . Micro Total Analysis Systems 2000, Enschede :Kluwer Academic Publishers, 2000:579-582.[9] BRAKKE K A. The surface evolver, Version 2.30. http://www.susqu.edu/brakke/. January 1, 2008.[10] 王毅,常小庆. 微重力环境下推进剂贮箱中三维气液平衡界面的数值模拟[J]. 火箭推进, 2007,33(3):31-35. WANG Y, CHANG X Q. Numerical simulation of three-dimensional gas-liquid equilibrium interfaces in the propellant tank under microgravitycondition[J]. Journal of Rocket Propulsion, 2007,33(3):31-35.(in Chinese)[11] BONN D, EGGERS J, INDERKEU J, et al.. Wetting and spreading[J]. Reviews of modern physics, 2009,81(2):739-805.[12] CONCUS P, FINN R. On capillary free surfaces in the absence of gravity[J]. Acta. Math., 1974,132(1):177-198.[13] 张平, 胡亮红, 刘永顺. 主辅通道型微混合器的设计和制作[J]. 光学 精密工程, 2010, 18 (4):872-879. ZHANG P, HU L H, LIU Y S. Design and fabrication of micromixer with main-assist channels[J]. Opt. Precision Eng., 2010,18(4):872-879. (in Chinese)[14] WEISLOGEL M M, LICHTER S. Capillary flow in an interior corner[J]. J. Fluid Mech., 1998,373(1):349-378.[15] SEEMANN R, BRINKMANN M, KRAMER E J, et al.. Wetting morphologies at microstructured surface[J]. Proc. Natl. Acad. Sci., 2005,102(6):1848-52.[16] ZIMMERMANN M, HUNZIKER P, DELMAR-CHE E. Valves for autonomous capillary systems[J]. Microfluid Nanofluid., 2008,5(3):395-402.
0
浏览量
358
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构