浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100039
2. 中国科学院 深圳先进技术研究院 精密工程研究中心,广东 深圳 518055
3. 香港中文大学精密工程研究所 香港特别行政区
收稿日期:2010-12-17,
修回日期:2011-02-10,
网络出版日期:2011-08-25,
纸质出版日期:2011-08-25
移动端阅览
王大志, 何凯, 杜如虚. 精确约束二自由度微动角位移机构设计[J]. 光学精密工程, 2011,19(8): 1874-1882
WANG Da-zhi, HE Kai, DU Ru-xu. Design of exact constraint micro-motion angle displacement mechanism with two degrees of freedom[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1874-1882
王大志, 何凯, 杜如虚. 精确约束二自由度微动角位移机构设计[J]. 光学精密工程, 2011,19(8): 1874-1882 DOI: 10.3788/OPE.20111908.1874.
WANG Da-zhi, HE Kai, DU Ru-xu. Design of exact constraint micro-motion angle displacement mechanism with two degrees of freedom[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1874-1882 DOI: 10.3788/OPE.20111908.1874.
为了研制面向精密工程的微动角位移机构
采用旋量代数分析了3-HSE和3-HSVR三螺旋角位移机构的自由度和约束模式。分析表明
基于"不共线三点确定一个平面"设计的角位移机构存在欠约束和欠确定运动问题
由此导致机构的位姿和运动具有不确定性。因此
提出了双螺旋式精确约束二自由度角位移机构。这种机构在自然状态下采用六点约束
具有确定位姿;在输入状态下自由度数等于输入数
具有确定运动。 采用矢量运动变换方法证明了机构在不同输入模式下的姿态调整原理并利用机构运动几何关系分析了机构灵敏度
结果表明
该角位移机构灵敏度优于0.83 rad。这种角位移机构仅采用两个螺旋支链
结构简单、位姿和运动确定、稳定性高
可用于两个自由度的姿态调整。
In order to design a micro-motion angle displacement mechanism for precision engineering
the degrees of freedom and constraint patterns of 3HSE and 3HSVR angle displacement mechanisms with three screws were analyzed
and it shows that the common angle displacement mechanisms designed via three point supports have the uncertainties of the orientation and motion. Therefore
an exact constraint angle displacement mechanism with double screws was presented. The mechanism is exactly constrained by six point constraints
so that the position and orientation are deterministic at the natural state. Moreover
the number of degrees of freedom of the mechanism are equal to the number of the inputs and its motion is also deterministic at the input state. Furthermore
the adjusting orientation principles under different inputs were proved and the sensitivity was analyzed via the relationship of kinematic geometry. The result indicates that the sensitivity of the mechanism is superior to 0.83 rad. The analysis shows that the proposed angle displacement mechanism has good stability and is suitable for the angle adjustment involving two degrees of freedom in precision engineering.
高云国. 大型光电设备载车三点液压调平支承的研究 [J]. 光学 精密工程,1996,4(3):106-110. GAO Y G. Research of three hydraulic leveling bearing points for carrying vehicle of large-size optical and electrical instrument [J]. Opt. Precision Eng.,1996,4(3):106-110. (in Chinese)[2] 姜伟伟,高云国,冯栋彦. 大型光电设备基准平面自动调平系统 [J]. 光学 精密工程,2009,17(5):1039-1045. JIANG W W,GAO Y G,FENG D Y,et al.. Automatic-leveling system for base-plane of large-size photoelectric equipment[J]. Opt. Precision Eng.,2009,17(5):1039-1045. (in Chinese)[3] 朱耆祥. ICF用阵列镜腔及阵列伺服反射镜的新型反射镜结构 [J]. 光电工程,2001,28(5):24-27. ZHU Q X. A novel mirror structure for array cavity mirror and array servo mirror used in inertial confinement fusion [J]. Opto-electronic engineering,2001,28(5):24-27. (in Chinese)[4] 朱耆祥. ICF驱动系统中新型阵列式镜架的设计研制[J]. 强激光与粒子束,2002,14(6):862-864. ZHU Q X. Design of a novel array mount for the driven system of inertial confinement fusion [J]. High power laser and particle beams,2002,14(6):862-864. (in Chinese)[5] 章亚男,沈丽丽,沈卫星,等. 大口径透镜姿态调整机构的支承分布设计[J]. 光学 精密工程,2010,18(12):2624-2632. ZHANG Y N,SHEN L L,SHEN W X,et al.. Design of support distribution for the attitude adjusting mechanism of large lens[J]. Opt. Precision Eng.,2010,18(2):2624-2632. (in Chinese).[6] 高福晖.机械零件强度许用值新标准及大型经纬仪机械设计 [M]. 成都:成都科技大学出版社,1998:202-210. GAO F H. New method for Fefining the Permissible Value of Strength of Machine Parts and Sup-theodolite Machine Design[M].Chengdu: Chengdu University of Science and Technology Press,1998: 202-210. (in Chinese)[7] EVANS C. Precision Engineering: an Evolutionary View [M]. Bedfordshire:Cranfield Press,1989.[8] VERMEULEN H,VERMEULEN M,WETZELS S,et al.. Design for precision: current status and trends[J]. Annals of the CRIP,1998,47(2):557-586.[9] 王大珩.现代仪器仪表技术与设计 [M]. 北京:科学出版社,2003:1422-1426. WANG D H. Design and Technology for Modern Instruments [M]. Beijing:Science Press,2003:1422-1426.[10] BLANDING D L. Exact Constraint: Machine Design Using Kinematic Principles [M]. New York:ASME Press,1999.[11] SLOCUM A H. Kinematic couplings: a review of design principles and application [J]. International journal of machine tools and manufacture, 2010,50(4):310-327.[12] CULPEPPER M L, KARTIK M V, DIBIASIO C. Design of integrated eccentric mechanisms and exact constraint fixtures for micro-level repeatability and accuracy [J]. Precision Engineering, 2005,29(1):65-80.[13] TAYLOR J B, TU J F. Precision X-Y micro-stage with maneuverable kinematic coupling mechanism [J]. Precision Engineering, 1996,18(2):85-94. [14] MURRAY R M, LI Z X, SASTRY S S. A Mathematical Introduction to Robotic Manipulation [M]. Boca Raton: CRC Press,1994.[15] 赵景山,冯之敬,褚福磊.机器人机构自由度分析理论 [M]. 北京:科学出版社,2009. ZHAO J SH, FENG ZH J, CHU F L. Analytical Theory of the Degree of Freedom for Robot Mechanisms [M]. Beijing: Science Press, 2009. (in Chinese)[16] KUMAR V. Instantaneous kinematics of parallel chain robotic mechanisms [J]. ASME Journal of Mechanical Design, 1992,114(3):349-358.
0
浏览量
428
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构