浏览全部资源
扫码关注微信
1. 西安电子科技大学 技术物理学院,陕西 西安 710071
2. 中国航天科工集团公司九院 总体设计部,湖北 武汉 430035
3. 西安电子科技大学 微电子学院,陕西 西安 710071
收稿日期:2010-11-02,
修回日期:2011-01-04,
网络出版日期:2011-08-25,
纸质出版日期:2011-08-25
移动端阅览
秦翰林, 周慧鑫, 刘群昌, 赖睿. 采用多尺度隐式马尔可夫模型的红外图像背景抑制[J]. 光学精密工程, 2011,19(8): 1950-1956
QIN Han-lin, ZHOU Hui-xin, LIU Qun-chang, LAI Rui. Suppression of infrared image background by multiscale hidden Markov model[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1950-1956
秦翰林, 周慧鑫, 刘群昌, 赖睿. 采用多尺度隐式马尔可夫模型的红外图像背景抑制[J]. 光学精密工程, 2011,19(8): 1950-1956 DOI: 10.3788/OPE.20111908.1950.
QIN Han-lin, ZHOU Hui-xin, LIU Qun-chang, LAI Rui. Suppression of infrared image background by multiscale hidden Markov model[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1950-1956 DOI: 10.3788/OPE.20111908.1950.
提出了一种基于多尺度隐式马尔可夫模型的红外图像背景抑制方法来解决红外弱小目标检测技术中复杂背景干扰的问题。根据红外目标和背景杂波所具有的不同统计分布特性
利用剪切波变换分解后各尺度、各方向子带内和子带间的系数之间的关系
建立了基于剪切波变换的多尺度隐式马尔可夫模型。通过期望最大化算法计算最优背景参数
分离红外图像中弱小目标信号和复杂背景杂波
达到抑制背景、保存并增强目标信号的目的。对真实的和模拟的包含弱小目标的红外图像序列进行了实验验证
实验结果表明
与最大中值滤波和局部去均值两种方法相比较
本文方法对红外弱小目标(SCR1.6)的复杂背景从主观视觉和数值指标上都具有良好抑制效果。
A background suppression method based on multi-scale Hidden Markov Mode (HMT) was proposed to remove the complex background clutter in the detection of dim and small targets. According to difference of distributed characteristics between target and background clutter in infrared image
the shearlet transform based multi-scale HMT was estimated by using the different scale and direction relation of inter-scale and cross-subband coefficients of decomposed images. Finally
the expectation-maximization(EM) algorithm was used to calculate the background
separate dim and small targets and background clutter of infrared image and to implement the suppression of background
and the preservation and enhancement of target signals. Compared with Max Median (MMed) and Local Means Remove (LMR) filter from subject inspection and value index
several groups of experimental results demonstrate that the proposed method can suppress the complicated background in dim and small target images effectively(SCR>=1.6).
CHEN J Y,REED I S. A detection algorithm for optical targets in clutter[J]. IEEE Trans. on Aerospace and Electronic Systems, 1987,23(1):46-59.[2] DESHPANDE S D,ER M H,VENKATESWARLU R,et al.. Max-mean and max-median filters for detection of small targets[J]. SPIE, 1999:3809:71-83.[3] ZHANG B Y,ZHANG B Y,ZHANG T X, et al.. Fast new small target detection algorithm based on a modified partial differential equation in infrared clutter[J]. SPIE Optical Engineering, 2007,46(10):106401-1-6.[4] LI H,WEI Y T,LI L Q. Infrared moving target detection and tracking based on tensor locality preserving projection [J]. Infrared Physics & Technology. 2010,53(2):77-83.[5] LIN J N,NIE X,UNBEHAUEN R. Two-dimensional LMS adaptive filter incorporating a local-mean estimator for image processing[J]. IEEE Trans. Circuits Syst., II: Analog Digital Signal Process, 1993,40(7):417-428.[6] WANG X,LIU L,TANG ZH. Infrared dim target detection based on fractal dimension and third-order characterization[J]. Chinese Optics Letters,2009,7(10):931-933.[7] 孟祥龙,张伟,丛明煜,等. 天基红外图像的点目标检测[J]. 光学 精密工程, 2010,18(9):2094-2010. MENG X L, ZHANG W, CONG M Y, et al.. Detection of point targets in space-based infrared image[J]. Opt. Precision Eng., 2010,18(9):2094-2010. (in Chinese)[8] 曹琦 ,王德江,张齐,等. 红外点目标检测中的能量累积[J]. 光学 精密工程, 2010,18(3):741-747. CAO Q, WANG D J, ZHANG Q, et al.. Energy accumulation in infrared point target detection[J]. Opt. Precision Eng., 2010,18(3):741-747. (in Chinese)[9] 王学伟,王春歆,张玉叶,等. 空间小目标动态规划检测[J]. 光学 精密工程, 2010,18(2):477-484. WANG X W, WANG CH X, ZHANG Y Y, et al.. Detection of small space target by dynamic programming [J]. Opt. Precision Eng., 2010,18(2):477-484. (in Chinese)[10] GUO K,LABATE D. Optimally sparse multidimensional representation using shearlets[J]. SIAM J. Math Anal., 2008,39(1):298-318.[11] CROUSE M S, NOWAK R D, BARANIUK R G. Wavelet- based statistical signal processing using hiddern Markov models[J]. IEEE Transactions on Signal Processing, 1998,46(4):886-902.[12] PO D D Y, DO M N. Directional multiscale modeling of images using the contourlet transform[J]. IEEE Transactions on Image Processing, 2006,15(6):1610-1620.[13] 秦翰林, 刘上乾, 周慧鑫. 采用Gabor核非局部均值的弱小目标背景抑制[J]. 红外与激光工程, 2009,38(4):737-741. QIN H L, LIU SH Q, ZHOU H X. Background suppression for dim small target with Gabor kernel non-local means[J]. Infrared and Laser Engineering, 2009,38(4):737-741. (in Chinese)
0
浏览量
543
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构