浏览全部资源
扫码关注微信
1. 北京理工大学 光电学院,北京 10081
2. 北京理工大学 光电成像技术与系统教育部重点实验室,北京 100081
收稿日期:2011-06-09,
修回日期:2011-07-01,
网络出版日期:2011-08-25,
纸质出版日期:2011-08-25
移动端阅览
张坤, 许廷发, 王平, 冯亮. 高精度实时全帧频SURF电子稳像方法[J]. 光学精密工程, 2011,19(8): 1964-1972
ZHANG Kun, XU Ting-fa, WANG Ping, FENG Liang. Real-time full-frame digital image stabilization system by SURF[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1964-1972
张坤, 许廷发, 王平, 冯亮. 高精度实时全帧频SURF电子稳像方法[J]. 光学精密工程, 2011,19(8): 1964-1972 DOI: 10.3788/OPE.20111908.1964.
ZHANG Kun, XU Ting-fa, WANG Ping, FENG Liang. Real-time full-frame digital image stabilization system by SURF[J]. Editorial Office of Optics and Precision Engineering, 2011,19(8): 1964-1972 DOI: 10.3788/OPE.20111908.1964.
针对视频抖动和电子稳像的实时性
提出了基于SURF的电子稳像算法。首先
采用SURF算法检测图像的兴趣点
建立了当前帧与参考帧的对应关系
得出高精度的运动估计矢量。然后
通过判定参考帧更新策略
获得平滑的帧间全局运动矢量
进而对原始视频序列进行运动补偿。最后
将参考帧对应区域像素填充到稳像帧丢失像素区域进行全帧频补偿
输出高精度的实时全帧频电子稳像视频。实验结果表明
采用SURF算法的实时电子稳像算法
运行时间<30 ms
精确度<1 pixel
对存在严重运动模糊的视频具有较强的鲁棒性
可以去除帧间高频抖动并有效改善视频质量。
To overcome the undesirable shakes or jiggles of a camera and to implement the image stabilization in real time
a real-time full-frame video stabilization system based on the Speeded Up Robust Features(SURF) was proposed.Firstly
the SURF was employed to extract feature points
and the correspondence between the current and reference frame was established to get high precision local motion vector estimation. Secondly
by determining the reference frame update strategy
the smoothed interframe global motion vector was obtained. Finally
the corresponding pixels of the reference frame was filled with a stablized frame to compensate the unstable motion and to output an stablized full-frame video. Experimental results show that the real-time full-frame video stabilization system using SURF algorithm can provide the high accuracy (lower than 1 pixel) and short processing time (less than 30 ms). Moreover
it has a higher robustness on serious motion-blur and better image quality.
王志民,徐晓刚. 电子稳像技术综述[J]. 中国图象图形学报,2010,15(3):470-480. WANG ZH M, XU X G. A survey on electronic image stabilization[J]. Journal of Image and Graphics, 2010,15(3):470-480. (in Chinese)[2] PO L M,NG K H,WONG K M, et al.. Multi-direction search algorithm for block-based motion estimation . Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, 2008:1466-1469.[3] ZHANG Y X, WANG J, ZHANG W G, et al..An improved algorithm of electronic image stability based on block matching . Proceedings of 2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2010:1924-1927.[4] TICO M. Adaptive block-based approach to image stabilization . Proceedings of 15th IEEE International Conference on Image Processing, 2008:521-524.[5] YIN B, DUAN H CH. Image stabilization by combining gray-scale projection and block matching algorithm . Proceedings of IEEE International Symposium on IT in Medicine & Education, 2009:1262-1266.[6] LIU Y K,DE J F,BO L, et al.. Real-time global motion vectors estimation based on phase correlation and gray projection algorithm . Proceedings of 2nd International Congress on Image and Signal Processing, 2009:1262-1266.[7] TIAN S Q, ZHAO P, WANG N H, et al.. Aims at moving objects' improvement based on gray projection of algorithm of the electronic image stabilization . Proceedings of 2010 3rd International Congress on Image and Signal Processing, 2010:2483-2487.[8] 王小鹏,阎国梁,裴建刚,等. 由形态学边缘模式匹配实现数字稳像[J]. 光学 精密工程, 2009,17(3):683-689. WANG X P, YAN G L, PEI J G. Stabilization of digital image by morphological edge pattern matching[J]. Opt. Precision Eng., 2009,17(3):683-689. (in Chinese)[9] 张叶, 曲宏松, 王延杰. 运用旋转无关特征线实现景象匹配[J]. 光学 精密工程, 2009,17(7):1759-1765. ZHANG Y, QU H S, WANG Y J. Implementation of scene matching based on rotation invariant keylines[J]. Opt. Precision Eng., 2009,17(7):1759-1765. (in Chinese)[10] 纪华,吴元昊,孙宏海,等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程, 2009, 17(2):439-444. JI H,WU Y H, SUN H H, et al..SIFT feature matching algorithm with global information[J]. Opt. Precision Eng., 2009,17(2):439-444. (in Chinese)[11] HERBERT B, TINNE T, LUC VAN G. SURF: speeded up robust features . 9th European Conference on Computer Vision, Graz, Austria, ECCV, 2006:404-417.
0
浏览量
219
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构