浏览全部资源
扫码关注微信
1. 南昌大学 机电工程学院 机器人与焊接自动化重点实验室,江西 南昌,330031
2. 江西师范大学 物理与通信电子学院 光电子与通信重点实验室,江西 南昌,330022
收稿日期:2010-11-24,
修回日期:2011-01-24,
网络出版日期:2011-09-26,
纸质出版日期:2011-09-26
移动端阅览
饶春芳, 张华, 冯艳, 肖丽丽, 叶志清. 镍金属保护光纤布拉格光栅的热处理及高温传感[J]. 光学精密工程, 2011,19(9): 2006-2013
RAO Chun-fang, ZHANG Hua, FENG Yan, XIAO Li-li, YE ZHi-qing. Heat treatment on fiber Bragg grating with Ni coating for elevated temperature sensor[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2006-2013
饶春芳, 张华, 冯艳, 肖丽丽, 叶志清. 镍金属保护光纤布拉格光栅的热处理及高温传感[J]. 光学精密工程, 2011,19(9): 2006-2013 DOI: 10.3788/OPE.20111909.2006.
RAO Chun-fang, ZHANG Hua, FENG Yan, XIAO Li-li, YE ZHi-qing. Heat treatment on fiber Bragg grating with Ni coating for elevated temperature sensor[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2006-2013 DOI: 10.3788/OPE.20111909.2006.
为了改善镍保护后光纤布拉格光栅(FBG)的高温传感性能
即降低其回程误差
减少其升温与降温灵敏度的差异
本文研究了产生这些现象的原因
认为其主要源于化学镀结合电镀镍过程中的残余应力。讨论了残余应力产生的机理
提出了适用于镍金属保护FBG的热处理方法。三次将金属镍保护后的FBG放置在120℃恒温炉中保温8 h后随炉冷却
对热处理前后的镍保护布拉格光纤光栅进行100~300 ℃的循环温度传感对照实验。结果显示:热处理前回程误差为6.64%
升温与降温灵敏度有较显著差异
且放置半个月后再次进行传感实验其特性也没有改善;热处理后
回程误差降到3.62%
升温灵敏度为22.84 pm/℃
降温灵敏度为22.76 pm/℃。实验表明
经适当热处理后的镍保护布拉格光纤光栅的实际工作温度可扩展到300 ℃
且具有较高的传感精度。
To improve the sensing characteristics of a Fiber Bragg grating(FBG) temperature sensor with a Ni coating
the causes of the hysteresis error and the difference of sensitivities when it was heated and cooled were researched. Results indicate that the residual stress induced by electroless-electroplating makes the sensor imprecise. The mechanism of the residual stress was discussed
then a heat treatment method was proposed for the metallized FBG(MFBG) with a nickel coating. In treatment
the MFBG sensor was put in a drying oven at 120 ℃ for 8 hours three times
and every time it was cooled with the oven. A comparison experiment for the MFBG with the nickel coating was performed in 100-300 ℃
results show that the hysteresis error of the sensor is 6.64%
and the difference of sensitivities when it is heated and cooled is more significant before the heat treatment. The sensor characteristics are not be amended even if it is performed temperature cycle again after half a month. However
the hysteresis error of the sensor is descended to 3.62%
and the sensitivities of the MFBG when it is heated and cooled are 22.84 pm/℃ and 22.76 pm/℃
respectively
after the heat treatment. The experiments demonstrate that with a higher sensing accuracy
the working range of the MFBG with the nickel coating has expanded to 300℃ after effective heat treatment.
HIROSHI T. Fiber Bragg grating vibration-sensing system insensitive to Bragg wavelength and employing fiber ring laser[J].Optic Letters,2010,35(14):2349-2351.[2] 尹霄丽,张琦,余重秀, 等. 相移超结构光纤布拉格光栅3C -H编解码器及其相关特性[J]. 光学 精密工程,2008,16(9):1608-1613. YIN X L, ZHANG Q, YU CH X, et al.. OCDMA encoder/decoder based on phase shifted super structure fiber Bragg grating and its correlation property[J]. Opt. Precision Eng., 2008,16(9):1608-1613.(in Chinese)[3] 王为,林玉池,朱萍玉. 光纤光栅在低阻抗材料动态性能测试中的应用[J]. 光学 精密工程,2009,17(3):488-492. WANG W, LIN Y CH, ZHU P Y. Application of FBG sensor to measurement of dynamic performance of low impedance material[J]. Opt. Precision Eng., 2009,17(3):488-492.(in Chinese)[4] 涂兴华,刘逢清,徐宁. 非连续线性啁啾取样布拉格光栅型多信道光纤滤波器的设计[J]. 光学 精密工程,2010,18(9):1965-1971. TU X H, LIU F Q, XU N. Desigh of high channel-count optical of fiber filters based on sampled bragg grating with discrete linear chirp structure [J]. Opt. Precision Eng., 2010,18(9):1965-1971.(in Chinese)[5] 饶云江, 王义平, 朱涛. 光纤光栅原理及应用[M]. 北京:科学出版社,2005,153-154, 185. RAO Y J, WANG Y P, ZHU T. The Theory and Application of Fiber Bragg Grating[M]. Beijing:Science Press, 2005,153-154:185.(in Chinese)[6] 涂亚庆,刘兴长.光纤智能结构[M]. 北京:高等教育出版社,2005:82-83. TU Y Q, LIU X CH. Intelligent Structured Based on Optical Fibers[M]. Beijing:Advanced Education Press,2005:82-83.(in Chinese)[7] LI Y L,ZHANG H, FENG Y, et al.. Metal coating of fiber bragg grating and the temperature sensing character after metallization [J]. Optical Fiber Technology, 2009, 15: 391-397.[8] SHEN R S, ZHANG J, WANG Y, et al.. Study on high-temperature and high-pressure measurement by using metal-coated FBG [J]. Microwave and Optical Technology Letters, 2008, 50(5): 1138-1140.[9] SHIUE S T. Effect of the coating thickness and roughness on the mechanical strength and thermally induced stress voids in nickel-coated fibers prepared by eletroless plating method [J]. Thin Solid Film, 2005,485: 169-175.[10] SANDLIN S, KINNUNEN T, R M J, et al.. A simple method for metal re-coating of optical fibre Bragg gratings [J]. Surface & Coatings Technology, 2006, 201: 3061-3065.[11] 冯艳,张华,李玉龙,等. 金属化保护的光纤布拉格光栅温度传感模型[J]. 光学学报,2009,29(2):336-341. FENG Y, ZHANG H, LI Y L, et al.. Temperature sensitization model of fiber Bragg grating with metal coating[J]. Acta Optica Sinica, 2009,29(2):336-341.(in Chinese)[12] 王洪刚.热弹性力学概论[M]. 北京:清华大学出版社, 1989:199. WANG H G. Introduction to Thermoelasticity[M]. Beijing:Tsinghua University Press, 1989:199.(in Chinese)[13] 程德福,王君,凌振宝,等.传感器原理及应用[M]. 北京:机械工业出版社,2008. CHEN D F, WANG J, LIN ZH B, et al.. The Theory and Application of Sensor[M]. Beijing:China Machine Press, 2008.(in Chinese)[14] SHIUE S T. Effect of coating thickness on thermal stresses in tungsten-coated optical fibers[J]. Jornal of Applied Physics, 2000,87(8):3759-3762.[15] SHIUES T, YANG C H, CHU R S, et al.. Effect of the coating thickness and roughness on the mechanical strength and thermally induced stress voids in nickel-coated optical fibers prepared by electroless plating method[J]. Thin Solid Film, 2005, 485:169-174.[16] 米谷茂. 残余应力的产生及对策[M]. 北京:机械工业出版社,1983:308-309. YONETANI S. Produce and Counter Measure of Residual Stress[M].Beijing:China Mechine Press, 1983:308-309.(in Chinese)[17] SHIUE S T, LIN Y S. Thermal stress in metal-coated optical fibers[J]. Journal of Applied Physics,1998, 83(11): 5719-5723.[18] 刘仁志. 影响镍镀层内应力的因素及排除方法[J]. 电镀与精饰,2004.10: 64-66. LIU R ZH. Factors affecting innerstress of nickel deposits and their trouble-shootings[J]. Electroplating&Finishing,2004,10:64-66.(in Chinese)[19] 谢华,陈文哲,钱匡武. 热处理对 Ni-P镀层内应力及结合强度的影响[J]. 电镀与环保, 2004, 24(3): 13-15. XIE H, CHEN W ZH, QIAN K W. Effects of heat treatment on the internal stress and adhesion of Ni-P coating[J]. Electroplating&Pollution Control, 2004, 24(3):13-15.(in Chinese)[20] 尚学军. 镍-磷合金化学镀及热处理[J]. 机械研究与应用,1998(1):37-38. SHANG X J. Electroless Ni-P and its heat treatment[J]. Mechina Research and Application,1998(1):37-38.(in Chinese)
0
浏览量
590
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构