浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100039
2. 中国科学院 长春光学精密机械与物理研究所 激发态物理重点实验室,吉林 长春,130033
收稿日期:2010-12-31,
修回日期:2011-01-25,
网络出版日期:2011-09-26,
纸质出版日期:2011-09-26
移动端阅览
张星, 宁永强, 曾玉刚, 秦莉, 刘云, 王立军. 980 nm高功率垂直腔面发射激光列阵的单元结构优化[J]. 光学精密工程, 2011,19(9): 2014-2022
ZHANG Xing, NING Yong-qiang, ZENG Yu-gang, QIN Li, LIU Yun, WANG Li-Jun. Optimization of element structure in 980 nm high-power vertical-cavity surface-emitting laser array[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2014-2022
张星, 宁永强, 曾玉刚, 秦莉, 刘云, 王立军. 980 nm高功率垂直腔面发射激光列阵的单元结构优化[J]. 光学精密工程, 2011,19(9): 2014-2022 DOI: 10.3788/OPE.20111909.2014.
ZHANG Xing, NING Yong-qiang, ZENG Yu-gang, QIN Li, LIU Yun, WANG Li-Jun. Optimization of element structure in 980 nm high-power vertical-cavity surface-emitting laser array[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2014-2022 DOI: 10.3788/OPE.20111909.2014.
为了提高980 nm垂直腔面发射激光器(VCSEL)列阵的整体性能
对列阵单元器件的分布布拉格反射镜(DBR)的反射率进行了优化。分析了DBR的反射率与阈值电流
输出功率及转换效率之间的关系
在维持较低阈值电流的前提下适当调节了N-DBR的反射率
使单元器件斜率效率得到了有效提高
进而改善了VCSEL列阵的整体输出特性。优化DBR反射率后研制出的包含64个单元的VCSEL列阵器件在注入电流为6 A时的连续输出功率为2.73 W;在脉宽为100 ns
重复频率为100 Hz的130 A脉冲电流驱动下输出功率达到115 W;包含300个单元的列阵器件在注入电流为18 A时
连续输出功率达到5.26 W。对N-DBR反射率进行优化后
VCSEL列阵的整体输出特性得到了有效改善。
The reflectivity of a Distributed Bragg Reflector (DBR) was optimized to improve the output characteristics of a 980 nm Vertical-cavity Surface-emitting Laser (VCSEL) array.The relationship among the reflectivity of N-DBR
threshold current
output power and wall-plug efficiency was analyzed.Then
the reflectivity of N-DBR was adjusted to achieve higher slope efficiency in a relative low threshold current and to improve the overall output characteristics of the VCSEL array.After N-DBR reflectivity optimization
the developed VCSEL array including 64 elements can offer a CW output power of 2.73 W under the injected current of 6 A and a pulse output power of 115 W under the pulse drive current of 130 A
a pulse width of 100 ns and a repetition frequency of 100 Hz. Furthermore
the VCSEL array including 300 elements can provide a CW output power of 5.26 W under the injected current of 18 A. It concludes that the performance of VCSEL array has been improved by N-DBR reflectivity optimization.
KOYAMA F. VCSELs: their 30 years history and new challenges [J]. SPIE,2008,7135:7135J(1-10).[2] KOYAMA F, MIYAMOTO T. Recent advances of VCSEL technologies. In IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. [3] JI C, WANG J Y, SODERSTROM D, et al.. High volume 850nm oxide VCSEL development for high bandwidth optical data link applications [J]. SPIE,2009,7229:722904(1-11).[4] MICHALZIK R, GRABHERR M, JAEGER R, et al.. Progress in high-power VCSELs and arrays [J]. SPIE,1998,3419:187-195.[5] MILLER M, GRABHERR M, KING R, et al.. Improved output performance of high-power VCSELs [J]. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(2):210-216.[6] YAN C L, NING Y Q, QIN L, et al.. A high power InGaAs/GaAsP vertical-cavity surface-emitting laser and its temperature characteristics [J]. Semiconductor Science and Technology, 2004, 17(19): 685-689.[7] HOFMANN W, GORBLICH M, ORTSIEFER M, et al.. Monolithic 2D high-power arrays of long-wavelength VCSELs [J]. SPIE,2008,6908:690807.[8] SEURIN J F, GHOSH C L, KHALFIN V, et al.. High-power high-efficiency 2D VCSEL arrays [J]. SPIE,2008,6908:690808.[9] SEURIN J F, GHOSH C L, KHALFIN V, et al.. High-power vertical-cavity surface-emitting arrays [J]. SPIE,2008,6876:68760D. [10] SEURIN J F, XU G Y, KHALFIN V, et al.. Progress in high-power high-efficiency VCSEL arrays [J]. SPIE,2009,7229:722903.[11] GESKE J, WANG C, MACDOUGAL M, et al.. High Power VCSELs for miniature optical sensors [J]. SPIE, 2010, 7615: 76150E.[12] SEURIN J F, XU G Y, WANG Q, et al.. High-brightness pump sources using 2D VCSEL arrays [J]. SPIE,2010,7615:76150F.[13] ZHANG Y, NING Y Q, QIN L, et al.. High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter[J]. Applied Optics,2010,49(19):2793-2797.[14] 孙艳芳,金珍花,宁永强,等. 高功率底发射VCSELs的制作与特性研究[J]. 光学 精密工程,2004,12(5):449-453. SUN Y F, JIN ZH H, NING Y Q, et al.. Fabrication and experimental characterization of high power bottom-emitting VCSELs[J]. Opt. Precision Eng., 2004,12(5):449-453. (in Chinese)[15] MACDOUGAL M, DAPKUS P, BOND A, et al.. Design and fabrication of VCSELs with AlxOy-GaAs DBRs [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(3): 905-915.[16] SHERRIFF R, FELD S, LOEHR J. Comparison of exact and approximate optical designs of graded-interface distribute bragg reflectors [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 582-589.[17] LI T, NING Y Q, HAO E J. Design and optimization of DBR in 980 nm bottom-emitting VCSEL [J]. Science in China Series F: Information Sciences, 2009, 52(7):1266-1271.[18] GRABHERR M, MILLER M, JAGER R, et al.. High-power VCSELs: single devices and densely packed 2-D-arrays [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 495-502.[19] COLDREN L A, CORZINE S W. Diode Lasers and Photonic Integrated Circuits [M]. New York: Wiley 1995.
0
浏览量
291
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构