浏览全部资源
扫码关注微信
1. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州,310032
2. 杭州师范大学 钱江学院,浙江 杭州,310012
收稿日期:2011-01-07,
修回日期:2011-01-29,
网络出版日期:2011-09-26,
纸质出版日期:2011-09-26
移动端阅览
计时鸣, 马宝丽, 谭大鹏. 结构化表面环境下软磨粒流的流场数值分析[J]. 光学精密工程, 2011,19(9): 2092-2099
JI Shi-ming, MA Bao-li, TAN Da-peng. Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2092-2099
计时鸣, 马宝丽, 谭大鹏. 结构化表面环境下软磨粒流的流场数值分析[J]. 光学精密工程, 2011,19(9): 2092-2099 DOI: 10.3788/OPE.20111909.2092.
JI Shi-ming, MA Bao-li, TAN Da-peng. Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2092-2099 DOI: 10.3788/OPE.20111909.2092.
为了研究模具结构化表面环境下软性磨粒流的流场加工特性
应用单颗动力学模型(SPD)通过数值模拟求解了颗粒在不同形态的湍流场中的运动特性。以U形流道为例
利用N-S方程、湍流的Realizable(
k-
)模型以及压力耦合方程的半隐相容(SIMPLEC)算法
求解了软性磨粒两相流场中流体的速度、压力等特性参数;接着利用SPD求解多种环境下软性磨粒两相流场中颗粒的速度、轨迹、密度分布等参数。实验结果表明:在流体初始速度为5
10
20 m/s 3种情况下
流体初始速度为5 m/s时颗粒沉降最为明显;在颗粒直径为0.01
0.05
0.1 mm 3种情况下
直径为0.01 mm时颗粒沉降较为明显;在水、柴油、机油3种不同黏度的湍流场中
两相软性磨粒流场特性非常接近。结论显示
流体的初始速度和颗粒的粒径使得湍流对颗粒运动特性影响较大
流体的黏性对其影响较小。
In order to explore machining characteristics of the soft abrasive flow field in a structured mold surface
the Single Dynamics Model(SPD) was applied to the solution to the motion characteristics of particles in different types of turbulence fields numerically. By taking a U-shaped flow passage for an example
the velocity and pressure of fluid in a two-phase soft abrasive flow field were solved by using the N-S equations
a Realizable
k-
model of turbulence and the SIMPLEC method. Then the velocity
locus and the density of particles in the two-phase field were also obtained by the SPD model. The results are that when the initial fluid velocities are 5
10 and 20 m/s
the particle deposition is the largest for the first case. When the particle diameters are 0.01
0.05 and 0.1 mm
the first value causes the particle deposition to be most obvious. In turbulence fields with different viscosities
the water
gas-oil and engine-oil show similar two-phase soft abrasive flow characteristics. It concludes that the initial velocity of the fluid field and the diameters of particles have more severe effect on the moving characteristics of particles
and the viscosity of the fluid influences them the least.
EKKARD B, OLTMANN R, ALEXANDER G. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering, 2006,30(3):325-336. [2] JI S M, XIAO F Q, TAN D P. Analytical method for softness abrasive flow field based on discrete phase model[J]. Science China - Technological Sciences, 2010,53(10):2867-2877.[3] RAJENDRA K J, JAIN V K, DIXIT P M. Modeling of material removal and surface roughness in abrasive flow machining process[J]. International Journal of Machine Tools & Manufacture, 1999,39(12):1903-1923.[4] JAIN V K, ADSUL S G. Experimental investigations into abrasive flow machining(AFM)[J]. International Journal of Machine Tools & Manufacture, 2000, 40(7):1003-1021.[5] GORANA V K, JAIN V K, LAL G K. Prediction of surface roughness during abrasive flow machining[J]. The International Journal of Advanced Manufacturing Technology, 2006, 31(3-4):258-267.[6] 方慧, 郭培基, 余景池. 液体喷射抛光技术材料去除机理的有限元分析[J]. 光学 精密工程, 2006, 14(2):218-223. FANG H, GUO P J, YU J C. Analysis of material removal mechanism in fluid jet polishing by finite element method[J]. Opt. Precision Eng., 2006 , 14( 2):218-223. (in Chinese)[7] HOWARD H H, PATANKAR N A, ZHU M Y. Direct numerical simulations of fluid-solid systems using the arbitrary lagrangian-eulerian technique[J]. Journal of Computational Physics,2001, 169(2):427-462.[8] 邓永波, 张平, 杜新, 等. 亲/疏水性不同壁面组成微通道的深宽比与通道内液体的自发毛细流动[J]. 光学 精密工程, 2010,18(7):1562-1567. DENG Y B, ZHANG P, DU X, et al.. Analysis of material removal mechanism in fluid jet polishing by finite element method[J]. Opt. Precision Eng., 2010,18(7):1562-1567. (in Chinese)[9] SHIH T H, LIOU W W, SHABBIR A, et al.. A new eddy viscosity two-equation model for high Renolds number turbulent flows[J]. Computer Fluids, 1995,24(3):227-238.[10] HAIDER A, LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technology, 1989, 58(1):63-70.[11] KLINE S J, REYNOLDS W C, SCHRAUB F H. The structure of turbulent boundary layer[J]. Journal of Fluid Mechanics, 1967, 30(4):741-773.[12] TABAKOFF W, HAMED A. Aerodynamic effects on erosion in turbomachery[J]. Jsme and Asme, 1977, 70:392-401.
0
浏览量
954
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构