浏览全部资源
扫码关注微信
华南理工大学 机械与汽车工程学院,广东 广州,510640
收稿日期:2011-01-10,
修回日期:2011-02-27,
网络出版日期:2011-09-26,
纸质出版日期:2011-09-26
移动端阅览
谢宏威, 张宪民, 邝泳聪, 欧阳高飞. 印刷电路板焊点的智能检测[J]. 光学精密工程, 2011,19(9): 2154-2162
XIE Hong-wei, ZHANG Xian-min, KUANG Yong-cong, OUYANG Gao-fei. Intelligent detection of solder joints on printed circuit boards[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2154-2162
谢宏威, 张宪民, 邝泳聪, 欧阳高飞. 印刷电路板焊点的智能检测[J]. 光学精密工程, 2011,19(9): 2154-2162 DOI: 10.3788/OPE.20111909.2154.
XIE Hong-wei, ZHANG Xian-min, KUANG Yong-cong, OUYANG Gao-fei. Intelligent detection of solder joints on printed circuit boards[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2154-2162 DOI: 10.3788/OPE.20111909.2154.
为了提高在线自动光学检测系统(AOI)的自动化程度
提出了一种基于增量聚类的智能焊点检测方法。首先
设计了在线智能AOI的系统框架。然后
根据焊点外观进行归纳分类
将关键子区域的面积特征应用于焊盘特征的量化与提取
将每类样本聚类为若干子类从而实现对多批次焊点的检测。最后
提出一种增量聚类算法
在线检测过程中系统可根据人工维修站反馈信息自动学习新的样本并调整相关检测参数。为了提高增量学习的效率
每次增量学习之前选择少量代表样本用于增量学习。采用提出的AOI系统检测焊点
准确率可达96.5%
平均每个焊点耗费9.3 ms。结果表明
本文提出的检测方法不仅可以对多批次的焊点缺陷进行有效识别
且对生产中工艺条件的变化有自适应能力
智能化程度较高
具有较强的实用价值。
To automate present Automatic Optical Inspection (AOI) systems
an intelligent method based on incremental clustering for solder joint inspection is proposed in this paper. Firstly
to meet the demands of practical production
the framework for an intelligent AOI system is designed. Then
all the defects of solder joints are classified into several different types according to their appearances
and the color features in critical regions are extracted. The samples in each class are clustered into several subclasses so that the system is able to inspect solders from different batches. Finally
a new incremental clustering algorithm is proposed. The AOI system can automatically adjust inspection parameters according to the feedback from the repair station. To improve training efficiency
only a few samples are selected. The method proposed is used in an AOI to inspect solder joints
and the inspecting accuracy can reach 96.5% while each solder inspection takes 9.3 ms. The experimental result demonstrates that the proposed method can detect accurately a solder defect from different patches
and can be modified for different manufacturing processes. The intelligence level of the system using the proposed method is high
and it can be used in practical application.
KUANG J H, HSU CH M, CHIU W CH, et al.. The variation of shear strength of the lead free Sn/3.0Ag/0.5Cu solder balls. IEEE Proceedings of the ninth Electronics Packaging Technology Conference, Singapore, 2007:910-913.[2] KOMKRIT C, SOTOSHI Y, MASAYOSHI I. Bare PCB inspection system with Sv-GMR sensor eddy-current testing probe[J]. IEEE Sensors Journal, 2007,7(5):890-896.[3] 吴福培,邝泳聪,张宪民,等. 基于模式匹配及其参数自适应的PCB焊点检测[J]. 光学 精密工程,2009,17(10):2586-2593. WU F P, KUANG Y C, ZHANG X M,et al.. Pattern matching and based PCB solder parameter adaptive joint inspection[J]. Opt. Precision Eng., 2009,17(10):2586-2593. (in Chinese)[4] CHIU S N, PERN M H. Reflection-area-based feature descriptor for solder joint inspection [J]. Machine Vision and Applications. 2007,8:95-106.[5] LOH H H, LU M S. Printed circuit board inspection using image analysis[J]. IEEE Transactions on Industry Applications, 1999, 5(2):426-432.[6] XIE H W, KUANG Y C, ZHANG X M. A High Speed AOI Algorithm for Chip Component Based on Image Difference. IEEE International Conference of Information & Automation, Zhuhai, China, 2009(4):969-974.[7] IBRAHIM Z, AL-ATTAS S A R,ASPAR Z. Analysis of the wavelet-based image difference algorithm for PCB inspection. Proceedings of the 41st SICE Annual Conference, Osaka, 2002:1525 - 1530.[8] KUK W K, HYUNG S C. Solder Joints Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method [J]. IEEE Transactions on Electronics Packaging Manufacturing, 2000,39(2):93-103.[9] 卢盛林,张宪民,邝泳聪. 基于神经网络的PCB焊点检测方法[J]. 华南理工大学学报(自然科学版), 2008,36(5):135-139. LU SH L, ZHANG X M, KUANG Y C. Neural Network Based Inspecting Method of PCB Solder Joint [J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(5):135-139.(in Chinese)[10] 黄杰贤,李迪,叶峰,等. 挠性印制电路板焊盘表面缺陷的检测[J]. 光学 精密工程,2010,18(11):2443-2453. HUNAG J X, LI D, YE F, et al.. Detection of surface defection of solder on flexible printed circuit[J]. Opt. Precision Eng., 2010,18(11):2443-2453.(in Chinese)[11] 卢盛林,张宪民. 无铅焊点检测光源的分析与优化设计[J]. 光学 精密工程,2008,16(8):1377-1383. LU SH L, ZHANG X M. Analysis and optimal design of illuminator for leadfess tin solder joint inspection [J]. Opt. Precision Eng., 2008,16(8):1377-1383. (in Chinese)[12] DUDANI, SAHIBSINGH A. The distance-weighted k-nearest-neighbor rule [J]. IEEE Transactions on Systems, Man and Cybernetics, 1976(6):325-327.[13] WANG D F, YEUNG D S, and TSANG E C. Weighted mahalanobis distance kernels for support vector machines[J]. IEEE Transactions on Neural Networks.2007 18(5):1453-1462.[14] TOU J T, GONZALEZ R C. Pattern Recognition Principle[M]. Boston:Addison Wesley, 1974.
0
浏览量
432
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构