浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
2. 西北工业大学 理学院,陕西 西安,710129
收稿日期:2010-12-16,
修回日期:2011-01-29,
网络出版日期:2011-09-26,
纸质出版日期:2011-09-26
移动端阅览
刘向增, 田铮, 史振广, 陈占寿. 基于FKICA-SIFT特征的合成孔径图像多尺度配准[J]. 光学精密工程, 2011,19(9): 2186-2196
LIU Xiang-zeng, TIAN Zheng, SHI Zhen-guang, CHEN Zhan-shou. SAR image multi-scale registration based on FKICA-SIFT features[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2186-2196
刘向增, 田铮, 史振广, 陈占寿. 基于FKICA-SIFT特征的合成孔径图像多尺度配准[J]. 光学精密工程, 2011,19(9): 2186-2196 DOI: 10.3788/OPE.20111909.2186.
LIU Xiang-zeng, TIAN Zheng, SHI Zhen-guang, CHEN Zhan-shou. SAR image multi-scale registration based on FKICA-SIFT features[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2186-2196 DOI: 10.3788/OPE.20111909.2186.
针对合成孔径(SAR)图像的配准
提出一种基于仿射不变快速核独立成分分析-尺度不变特征变换(FKICA-SIFT)的多尺度配准方法。首先
根据特征点的Hessian矩阵构建仿射不变SIFT描述子。接着
利用FKICA提取该描述子的独立成分得到新的描述子FKICA-SIFT。然后
利用该描述子对Steerable滤波后的各层带通合成子图像提取的特征点进行匹配。最后
采用由粗到细的匹配策略逐步优化变换参数
实现图像的多尺度精确配准。实验结果表明
对有较大仿射变化的SAR图像
当阈值小于0.7时
该方法的匹配正确率大于85%
阈值小于0.5时
匹配正确率可达90%以上
配准精度达到亚像素水平
优于SIFT
PCA-SIFT
ICA-SIFT及SURF等相关方法。使用该方法准确地检测出了地震前后唐家山堰塞湖水域的变化情况
基本满足了SAR图像变换检测前精确配准的要求。
In order to realize automatic registration of a Synthetic Aperture Radar(SAR) image
an approach of image multi-scale registration based on affine invariant Fast Kernel Independent Component Analysis-Scale Invariant Feature Transform(FKICA-SIFT) features is presented. First
the affine invariant SIFT descriptors are constructed according to the Hessian matrix of feature points. The FKICA is used to extract the independent components of the affine invariant SIFT descriptors to obtain new descriptors (FKICA-SIFT). After filtering the input images by using Steerable pyramid
the new descriptors are used to match the feature points detected from the synthetic images of the band-pass sub-images in each layer. Finally
a coarse-to-fine procedure is adopted for gradual optimizing transformation parameters to achieve the multi-scale registration results. Experimental results show that the correct matching rate of proposed algorithm is more than 85% when the threshold is less than 0.7 and that is more than 90% when the threshold is less than 0.5. The registration accuracy of the proposed algorithm can achieve sub-pixel level and it is better than those of SIFT
PCA-SIFT
ICA-SIFT and SURF methods. It has been applied to accurate detection of the changes of the Tangjiashan waters before and after the Wenchuan earthquake
and obtained results meet the requirements of accurate registration for SAR images.
BROWN L G. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4): 326-376.[2] LI H, MANJUNATH B S, MITRA S K. A contour-based approach to multisensor image registration [J]. IEEE Transactions on Image Processing, 1995, 4(3):320-334.[3] WANG SH, XIAO J, JIAO L CH, et al.. Fast and accurate automatic SAR image registration using seven invariant moments and improved chain coding of region boundaries [J]. SPIE,2007, 6787:1-7.[4] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2):91-110.[5] ZHENG Y, CAO ZH G, YANG X. Multi-spectral remote image registration based on SIFT [J]. Electronics Letters, 2008, 44(2):107-108.[6] EL RUBE I A, SHARKS M A, SALEM A R. Image registration based on multiscale SIFT for remote sensing images. Proceedings of the Third International Conference on Signal Processing and Communication Systems, Omaha, USA: ICSPCS 2009:1-5.[7] KE Y, SUKTHANKAR R. PCA-SIFT: A more Distinctive Representation for Local Image Descriptors. Proceedings of International Conference on Pattern Recognition, Washington, USA: ICPR, 2004: 511-517.[8] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.[9] DUAN C, MENG X, TU C, et al.. How to make local image features more efficient and distinctive [J]. IET Computer Vision, 2008, 2:178-189.[10] BAY H, ESS A, TUYTELAARS T, et al.. Speeded-up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110: 346-359.[11] 纪华,吴元昊,孙宏海,等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程, 2009, 17(2):439-444. JI H, WU Y H, SUN H H, et al.. SIFT feature matching algorithm with global information [J]. Opt. Precision Eng., 2009,17(2):439-444.[12] 杨晓敏,吴炜,卿粼波,等. 图像特征点提取及匹配技术[J]. 光学 精密工程, 2009, 17(9):2276-2282. YANG X M, WU W, QING L B, et al.. Image feature extraction and matching technology [J]. Opt. Precision Eng., 2009, 17(2):2276-2282.(in Chinese)[13] 何建伟,杨建峰,薛彬,等. 基于系统论匹配准则的尺度不变特征变换的图像自动拼接研究[J]. 光学学报,2010, 30(4): 989-993. HE J W, YANG J F, XUE B, et al.. Research on the automatic stitching of panorama camera image based system similarity matching principle [J]. Acta Optica Sinia, 2010, 30(4): 989-993.(in Chinese)[14] ZAVORIN I, MOIGNE J L. Use of multiresolution wavelet feature pyramids for automatic registration of multisensory imagery [J]. IEEE Transactions on Image Processing, 2005, 14(6): 770-782.[15] FREEMAN W T, ADELSON E H. The design and use of steerable filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(9):891-907.[16] LIU X Z, TIAN ZH, XU H X, et al.. Registration of remote sensing images with steerable pyramid transform and robust SIFT features. Proceedings of the International Workshop on Information Security and Application, Qingdao, IWISA 2009: 214-217.[17] LIU X Z, TIAN ZH, LENG CH C, et al.. Remote sensing image registration based on KICA-SIFT descriptors. Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, FSKD, 2010:278-282.[18] SHEN H, JEGELKA S, GRETTON A. Fast kernel-based independent component analysis [J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3498-3511.[19] LINDEBERG T, GARDING J. Shape-adapted smo-othing in estimation of 3-D shape cues from affine deformation of local 2-D brightness structure [J]. Image and Vision Computing, 1997, 15(6):415-434.[20] LIU Z, HO Y K, TSUKADA K, et al.. Using multiple orientational filters of steerable pyramid for image registration [J]. Information Fusion, 2002, 3: 203-214.
0
浏览量
444
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构