浏览全部资源
扫码关注微信
重庆大学 光电技术及系统教育部重点实验室 重庆,400044
收稿日期:2011-01-06,
修回日期:2011-02-27,
网络出版日期:2011-09-26,
纸质出版日期:2011-09-26
移动端阅览
杨利平, 辜小花, 叶洪伟. 用于分类的样本保局鉴别分析方法[J]. 光学精密工程, 2011,19(9): 2205-2213
YANG Li-ping, GU Xiao-hua, YE Hong-wei. Sample locality preserving discriminant analysis for classification[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2205-2213
杨利平, 辜小花, 叶洪伟. 用于分类的样本保局鉴别分析方法[J]. 光学精密工程, 2011,19(9): 2205-2213 DOI: 10.3788/OPE.20111909.2205.
YANG Li-ping, GU Xiao-hua, YE Hong-wei. Sample locality preserving discriminant analysis for classification[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2205-2213 DOI: 10.3788/OPE.20111909.2205.
针对高维数据分类中鉴别特征降维方法的小样本问题和有效维度丢失问题
结合最新提出的片对齐框架和保局投影提出了样本保局鉴别分析方法。该方法通过分别构造每个样本的类内近邻图和类外近邻图
并将所有样本的类内近邻图和类外近邻图结合起来
形成了所有样本的类内近邻和类外近邻关系。然后
在使所有样本的类内近邻尽可能地聚集在一起的同时使类外近邻尽可能地分开
得到从高维输入空间到低维特征空间的最优映射关系。该方法有效避免了高维数据分类的小样本问题且扩展了鉴别分析的低维特征空间的有效维度。在ORL、FERET和PIE等人脸库上的高维数据分类实验证实
样本保局鉴别分析方法显著优于经典的鉴别特征降维方法。与基于片对齐框架提出的鉴别局部对齐方法相比
样本保局鉴别分析方法在FERET库上的分类识别精度提高了4.5%以上。
The small sample size and the loss of effective dimension problems always exist in discriminative dimension reduction methods of high-dimensional data classification. To address these problems
a Sample Locality Preserving Discriminant Analysis (SLPDA) method is proposed by integrating the latest patch alignment framework and Locality Preserving Projections (LPP). The within-class and out-class neighborhood relationships of all samples in the SLPDA are constructed by summing the within-class and out-class neighborhood graphs of each sample
respectively. Thereafter
the optimal mapping from a high-dimensional input space to a low-dimensional feature space of the SLPDA is obtained by making the within-class neighbors of all samples as close as possible and meanwhile keeping the out-class neighbors as distant as possible. The proposed SLPDA method avoids the small sample size problem of high-dimensional data classification and extends the effective dimension of low- dimensional feature space. Experimental results on several high-dimensional face databases
e.g. ORL
FERET and PIE
indicate that the proposed SLPDA method significantly outperforms the classical discriminative dimension reduction methods. Comparing with Discriminative Locality Alignment (DLA)
which is also a dimension reduction method based on patch alignment framework
the recognition rate of SLPDA on a FERET subset is 4.5% higher.
梁毅雄,龚卫国,潘英俊,等. 基于奇异值分解的人脸识别方法[J]. 光学 精密工程,2004,12(5):543-549. LIANG Y X, GONG W G, PAN Y J, et al.. Singular value decomposition-based approach for face recognition [J]. Opt. Precision Eng., 2004, 12(5): 544-549. (in Chinese)[2] 黄鸿,李见为,冯海亮. 基于有监督的核局部线性嵌入的面部表情识别[J]. 光学 精密工程,2008,16(8):1471-1477. HUANG H, LI J W, FENG H L. Facial expression recognition based on supervised kernel local linear embedding [J]. Opt. Precision Eng., 2008,16(8):1471-1477. (in Chinese)[3] YAN S C, XU D, ZHANG B Y, et al.. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51.[4] TENENBAUM J B, SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(22):2319-2323.[5] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(22):2323-2326.[6] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6):1373-1396.[7] HE X F, YAN S C, HU Y X, et al.. Face recognition using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(3):328-340.[8] 杨利平,龚卫国,李伟红,等. 随机采样子空间保局投影人脸识别算法[J]. 光学 精密工程,2008,16(8):1465-1470. YANG L P, GONG W G, LI W H, et al.. Random sampling subspaces locality preserving projections for face recognition [J]. Opt. Precision Eng., 2008, 16(8):1465-1470. (in Chinese)[9] TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1):71-86.[10] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.[11] HE X F, CAI D, YAN S C, et al.. Neighborhood preserving embedding. Proceedings of IEEE International Conference on Computer Vision, 2005,1208-1213.[12] ZHANG T H, TAO D C, LI X L, et al.. Patch alignment for dimensionality reduction [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1299-1313.[13] ZHANG T H, HUANG K Q, LI X L, et al.. Discriminative orthogonal neighborhood-preserving projections for classification [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2010, 40(1):253-263.[14] YANG L P, GONG W G, GU X H, et al.. Bagging null space locality preserving discriminant classifiers for face recognition [J]. Pattern Recognition, 2009,42(9):1853-1858.[15] HU H F. Orthogonal neighborhood preserving discriminant analysis for face recognition [J]. Pattern Recognition, 2008, 41(6):2045-2054.[16] YU W W, TENG X L, LIU C Q. Face recognition using discriminant locality preserving projections [J]. Image and Vision Computing, 2006, 24(3):239-248.[17] 杨利平,龚卫国,辜小花,等. 完备鉴别保局投影人脸识别算法[J]. 软件学报,2010,21(6):1277-1286. YANG L P, GONG W G, GU X H,et al.. Complete discriminant locality preserving projections for face recognition [J]. Journal of Software, 2010, 21(6):1277-1286. (in Chinese)[18] YANG L P, GONG W G, GU X H, et al.. Null space discriminant locality preserving projections for face recognition [J]. Neurocomputing, 2008, 71(16-18):3644-3649.[19] LI Z F, LIN D H, TANG X O. Nonparametric discriminant analysis for face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(4):755-761.
0
浏览量
545
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构