浏览全部资源
扫码关注微信
1. 北京遥感信息研究所 北京,100192
2. 海军装备研究院 信息工程技术研究所 北京,102249
收稿日期:2010-11-29,
修回日期:2011-03-15,
网络出版日期:2011-09-26,
纸质出版日期:2011-09-26
移动端阅览
柴先明, 彭耿, 师栋锋, 吕守业, 詹明. 基于匹配搜索的伪随机序列生成多项式估计[J]. 光学精密工程, 2011,19(9): 2222-2227
CHAI Xian-ming, PENG Geng, SHI Dong-feng, LV Shou-ye, ZHAN Ming. Generator polynomial estimation of pseudo-random sequence based on match-searching[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2222-2227
柴先明, 彭耿, 师栋锋, 吕守业, 詹明. 基于匹配搜索的伪随机序列生成多项式估计[J]. 光学精密工程, 2011,19(9): 2222-2227 DOI: 10.3788/OPE.20111909.2222.
CHAI Xian-ming, PENG Geng, SHI Dong-feng, LV Shou-ye, ZHAN Ming. Generator polynomial estimation of pseudo-random sequence based on match-searching[J]. Editorial Office of Optics and Precision Engineering, 2011,19(9): 2222-2227 DOI: 10.3788/OPE.20111909.2222.
对截短和误码条件下伪随机序列生成多项式估计算法的误码适应性进行了研究。根据伪随机序列的线性约束原理
通过构造关于生成多项式系数的校验方程组
提出了基于匹配搜索方法的生成多项式估计算法
并在搜索过程中利用生成多项式在二元域的基本特性缩小搜索范围来优化算法
减少计算量。最后
对算法在不同门限值和误码率时的估计性能进行了仿真
且以
m
序列为例
对本算法与典型算法在截短序列和误码适应性方面进行性能对比。仿真结果表明
该算法能较好完成对15阶
m
序列生成多项式的估计
可以适应20%以上的误码率
与现有算法相比
本算法具有更好的误码和截短序列适应性
能较好地满足工程实践中扩频序列分析的需要。
The generator polynomial estimation of a pseudo-random sequence in truncated codes or error codes is studied in the paper. An optimum estimation algorithm for the generator polynomial via a match-searching is proposed by constructing verification equations based on the linear principle of the pseudo-random sequence. The important characteristic of reducible polynomial in
GF
(2) is used by reducing the computational amount in algorithm optimization. Finally
the estimation performance of the algorithm at different thresholds and bit errors is simulated
and the performance of the algorithm for the truncated codes or error codes is compared with that of the typical algorithm by taking
m
-sequences as an example. Simulation results indicate that the algorithm has good adaptability for the error codes and truncated codes and it completes a estimation for the
m
-sequences with rank of 15 and can adapte to an error rate more than 20%. The algorithm can preferably meets engineering application requirements.
WADE TRAPPE. Introduction to Cryptography with Coding Theory[M]. Beijing: Posts & Telecom Press, 2008.[2] 彭耿, 黄知涛, 陆凤波,等. 双通道卫星通信信号快速盲检测[J]. 光学 精密工程, 2009, 17(10):2535-2541. PENG G, HUANG ZH T, LU F B, et al.. Double-channel fast blind detection of satellite communication signals[J]. Opt. Precision Eng., 2009,17(10):2535-2541. (in Chinese)[3] 吴迪. 直扩信号的快速同步技术研究. 南京: 南京理工大学, 2009. WU D. Fast Synchronization technology of DS signal. NanJing: Nanjing University of Science and Technology,2009. (in Chinese)[4] BERLEKAMP E R. Algebraic Coding Theory[M]. NY USA: McGraw-Hill Book Company, 1968.[5] HEYDTMANN A E, JENSEN J M. On the equivalence of the Berlekamp Massey and the Euclidean algorithms for decoding[J]. IEEE Transactions on Information Theory, 2000,46(7):2614-2624.[6] 王丽萍, 祝跃飞. F -格基约化算法和多条序列综合[J]. 中国科学E辑, 2003,33(2):8-12. WANG L P, ZHU Y F. F - Geikie reduction algorithm and multiple sequence synthesis[J]. Science in China,Ser.E, 2003,33(2):8-12. (in Chinese)[7] SAID E E. Efficient detection of truncated m-sequence using higher order statistics. Proceeding of the 20th National Radio Science Conference, Cairo, Egypt, 2003, 8: 1-9.[8] WANG F H,HUANG ZH T,ZHOU Y Y. A new method for m-sequence and Gold-sequence generator polynomial estimation. Proceeding of IEEE International Symposium on Microwave Antenna, Propagation and EMC Technologies for Wireless Communications, 2007.[9] 史进. 自编码扩频技术的研究. 西安:西安电子科技大学,2010. SHI J. Research on Self-encoded Spread Spectrum Technology. XiAn: XiDian University, 2010. (in Chinese)[10] NINA D, LI C. LDPC Encoding based on the primitive polynomial. Wireless Communications Networking and Mobile Computing (WiCOM), 2010:1-2. (in Chinese)[11] 王鑫,王新梅,韦宝典. 判定有限域上不可约多项式及本原多项式的一种高效算法[J]. 中山大学学报,2009,48(1):6-9. WANG X, WANG X M, WEI B D. An efficient and deterministic algorithm to determine irreducible and primitive polynomials over finite fields[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009,48(1):6-9. (in Chinese)[12] 曹涵, 陈恭亮. 基于素性检验思想的不可约多项式判断[J]. 信息安全与通信保密, 2006,3:73-74. CAO H, CHEN G L. Test of irreducible polynomials based on primality-test[J]. Information Security and Communications Privacy, 2006,3:73-74. (in Chinese)[13] SHU L, DANIEL J C. Error Control Coding[M].BeiJing: China Machine Press, 2007.[14] 郭鑫. 伪随机序列构造及其随机性分析研究. 上海:上海交通大学,2008. GUO X. Study on construction and randomness analysis of pseudorandom sequences. ShangHai: Shanghai Jiao Tong University,2008. (in Chinese)
0
浏览量
437
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构