浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨,150001
2. 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨,150080
收稿日期:2011-01-12,
修回日期:2011-02-18,
网络出版日期:2011-10-27,
纸质出版日期:2011-10-25
移动端阅览
刘炳辉, 杨立军, 王扬. 镀膜光纤探针近场捕获的模拟与实验[J]. 光学精密工程, 2011,19(10): 2355-2365
LIU Bing-hui, YANG Li-jun, WANG Yang. Simulation and experiments of near-field trapping using metal-coated optical fiber probe[J]. Editorial Office of Optics and Precision Engineering, 2011,19(10): 2355-2365
刘炳辉, 杨立军, 王扬. 镀膜光纤探针近场捕获的模拟与实验[J]. 光学精密工程, 2011,19(10): 2355-2365 DOI: 10.3788/OPE.20111910.2355.
LIU Bing-hui, YANG Li-jun, WANG Yang. Simulation and experiments of near-field trapping using metal-coated optical fiber probe[J]. Editorial Office of Optics and Precision Engineering, 2011,19(10): 2355-2365 DOI: 10.3788/OPE.20111910.2355.
为提高近场捕获的能力与灵活性
研究了一种利用镀膜光纤探针对纳米微粒进行近场捕获的方法。采用麦克斯韦应力张量和三维时域有限差分方法建立了近场中纳米微粒的作用力模型
通过光阱力与其他作用力的比较讨论了近场捕获的稳定性
并根据各轴向光阱力的分布情况分析了纳米微粒的捕获尺寸与捕获位置。结果表明
只有当微粒尺寸小于探针孔径时才存在捕获效果
探针尖端不同位置出现不同捕获过程
在光阱力的作用下微粒最终被捕获至孔径边缘并形成圆状分布。结合纳米定位与检测方法
设计了全光纤低损耗的光纤探针近场捕获系统
并对120 nm的聚苯乙烯微粒进行了捕获实验。结果表明
采用极低的激光功率能把粒径为激光波长1/7的纳米微粒捕获至光纤探针尖端
并形成内径与探针孔径一致的圆环状分布。该计算与实验结果为近场纳米操作的实验研究打下了基础。
A near-field trapping method for nanoparticles by a metal-coated optical fiber probe is proposed to improve the nanomanipulation technology. By applying a Maxwell stress tensor and 3D Finite Difference Time Domain(FDTD) methods
the physical properties of trapping stability
particle sizes and trapping positions in the near-field trapping are revealed. The effect of trapping forces acted on a nanoparticle along three axis directions on the trapping positions is studied
and different trapping positions are generated in the aperture edge in polarization direction and the center surface of the probe tip. Numerical results indicate that the Near-field Scanning Optical Microscopy (NSOM) probe is able to trap nanoparticles in a circular shape with lower laser intensity (~1040 W/mm
2
) than that (~10
5
W/mm
2
) required by a conventional optical manipulator. A near-field optical trapping system using the tapered metal-coated fiber probe is designed. A NSOM probe
a polarized semiconductor laser and a laser scanning confocal microscope are applied to pushing the trapping resolution further down to 120 nm. In experiments
120-nm polystyrene particles are trapped in multi-circular shape with a minimum size of 400 nm at a resolution of /7 (: laser wavelength) and
d
(
d
: tip diameter of NSOM probe)
respectively
which agrees well with the simulated result. The method proposed in the paper largely promotes the role of near-field optical manipulation.
EIGLER D M, SCHWERIZER E K. Positioning single atoms with a scanning tunneling microscope [J]. Nature, 1990, 344: 524-526.[2] HWANG J, POTOTSCHNIG M, LETTOW R, et al.. A single-molecule optical transistor [J]. Nature, 2009,460:76-80.[3] SANG IE, YASUHIRO T, TERUTAKE H. Novel contact probing method using single fiber optical trapping probe [J]. Precision Engineering, 2009,33(3):235-242.[4] BEAULAC R, SCHNEIDER L, ARCHER PI, et al.. Light-induced spontaneous magnetization in doped colloidal quantum dots [J]. Science, 2009,325(5943): 973-976.[5] 刘秀梅, 王佳. 用时阈有限差分方法研究光纤微探针近场分布特性[J]. 光学学报, 2001, 21(10):1234-1238. LIU X M, WANG J. Characterization of near-field distribution of optical fiber probe by FDTD [J]. Acta Photonica Sinica, 2001, 21(10):1234-1238. (in Chinese)[6] TANAKA M. Boundary integral equations for computer aided design of near-field optics [J]. Electronics and Communications in Japan, 1996,79(11):101-108.[7] VESPERINAS M N, CHAUMET P C, RAHMANI A. Near-field photonic forces [J]. Philosophical Transactions of the Royal Society of London Series A, 2004,362:719-737.[8] WANG K Y, JIN Z, HUANG W H. The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip [J]. Optics Communications, 1998, 149:38-42.[9] ZHANG G P, ZHU Z R, LI Y P, et al.. Numerical analysis of near-field optical trapping using tapered fiber probe [J]. SPIE, 2000, 4082:321-328.[10] OKAMOTO K, KAWATA S. Radiation force exerted on subwavelength particles near a nanoaperture [J]. Physical Review Letters, 1999, 83(22):4534-4537.[11] GU M, KURIAKOSE S, GAN X S. A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes [J]. Optics Express, 2007, 15(3):1369-1375.[12] REECE P J, CHVEZ V G, DHOLAKIA K. Near-field optical micromanipulation with cavity enhanced evanescent waves [J]. Applied Physics Letters, 2006,88:221116.[13] KWAK E S, ONUTA T D, AMARIE D, et al.. Optical trapping with integrated near-field apertures [J]. The Journal of Physical Chemistry B, 2004,108(36):13607-13612.[14] MELLOR C D, BAIN C D, LEKNER J. Pattern formation in evanescent wave optical traps [J]. SPIE, 2005,5930:59301C-1-10.[15] NEUMAN K C, BLOCK S M. Optical trapping [J]. Review of Scientific Instruments, 2004,75(9):2787-2809.[16] SVOBODA K, BLOCK S M. Biological applications of optical forces [J]. Annual Review of Biophysics and Biomolecular Structures, 1994, 23(1):247-285.[17] BARTON J P, ALEXANDER D R, SCHAUB S A. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam [J]. Journal of Applied Physics, 1989, 66:4594.[18] YEE K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media [J]. IEEE Transactions on Antennas and Propagation, 1996,14(3):302-307.[19] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 第一版, 西安: 西安电子科技大学出版社, 2002: 232. GE D B, YAN Y B. Electromagnetic Wave and FDTD [M]. First Edition, Xian: Xian University of Electronic Science and Technology Press, 2002:232. (in Chinese)[20] TAFLOVE A. Computational Electrodynamics: the Finite Difference Time Domain Method [M]. Second Edition, Norwood: Artech House, 2000:156.[21] 刘炳辉, 杨立军, 王扬, 等. 光纤探针型近场光镊光强分布特性的数值模拟 . 第八届中国国际纳米科技研讨会, 2009:Z048. LIU B H, YANG L J, WANG Y, et al.. The numerical simulation of the near-field properties of near-field optical tweezers probe . 8th Chinese International Nanoscience and Technology Symposium, 2009:Z048. (in Chinese)[22] MUR G. Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic field equations [J]. IEEE Transactions on Electromagnetic Compatibility, 1981, EMC-23(4):377-382.[23] LIU B H,YANG L J,WANG Y.Simulation of near-field optical manipulator using the combination of a NSOM probe and an AFM metallic probe[J]. Journal of Applied Physics,2011,109(10):104317-104317-6.[24] LIU B H,YANG L J,WANG Y,et al..Particles nanomanipulation by the enhanced evanescent field through a near-field scanning optical microscopy probe[J]. Sensors & Actuators A:Physical,2011,169(1):171-177.[25] HU ZH, WANG J, LIANG J W. Manipulation of yeast cells by a tapered fiber probe and measurement of optical trapping force [J]. Journal of the Korean Physical Society, 2005, 47:S9-S12.[26] LIU B H, YANG L J, WANG Y. Light distribution analysis of optical fiber probe-based near-field optical tweezers using FDTD [J]. Journal of Physics: Conference Series, 2009, 188:012-029.[27] 朱星. 近场光学与近场光学显微镜[J]. 北京大学学报(自然科学版), 1997, 33(3):396. ZHU X. Near-field optics and near-field microscopy: the basic principles and their applications [J]. Journal of Peking University (Natural Science Edition), 1997, 33(3):396. (in Chinese)[28] TAYLOR R, HNATOVSKY C. Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe [J]. Optics Express, 2004,12(5):916-928.
0
浏览量
874
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构