浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2011-01-29,
修回日期:2011-02-18,
网络出版日期:2011-10-27,
纸质出版日期:2011-10-25
移动端阅览
王帅, 李洪文, 孟浩然, 吴庆林. 光电望远镜伺服系统速度环的自抗扰控制[J]. 光学精密工程, 2011,19(10): 2442-2449
WANG Shuai, LI Hong-wen, MENG Hao-ran, WU Qing-lin . Active disturbance rejection controller for speed-loop in telescope servo system[J]. Editorial Office of Optics and Precision Engineering, 2011,19(10): 2442-2449
王帅, 李洪文, 孟浩然, 吴庆林. 光电望远镜伺服系统速度环的自抗扰控制[J]. 光学精密工程, 2011,19(10): 2442-2449 DOI: 10.3788/OPE.20111910.2442.
WANG Shuai, LI Hong-wen, MENG Hao-ran, WU Qing-lin . Active disturbance rejection controller for speed-loop in telescope servo system[J]. Editorial Office of Optics and Precision Engineering, 2011,19(10): 2442-2449 DOI: 10.3788/OPE.20111910.2442.
针对大口径光电望远镜惯量大、存在摩擦非线性的特点
设计了自抗扰控制器以改善伺服系统的速度响应特性。介绍了自抗扰控制器的工作原理和基本结构
给出了控制器参数的选择依据
并仿真分析了各个参数的作用效果。最后
在实际望远镜转台上和常规PID控制器进行了对比实验。结果表明
采用自抗扰控制器
既可以实现大速度阶跃响应快速无超调
又可以缩短低速阶跃响应时间、改善低速平稳性。在以0.005 ()/s速度运行时
系统稳定时间为1 s
速度波动标准差为0.000 082 ()/s
最大值为0.000 42 ()/s
性能明显优于传统的PID控制系统。实验结果证明自抗扰控制器对摩擦、饱和等非线性因素具有抑制能力
可以提高望远镜伺服系统的调速性能。
According to the characteristics of a large optical telescope by large inertia and nonlinear frictions
an Active Disturbance Rejection Controller (ADRC) was designed to improve the response speed of the servo system. The working principle and basic structure of the ADRC was introduced
the regulation of parameters for the ADRC was given
and each parameter was analyzed imitatively. Finally
the ADRC was compared with conventional PID controllers. Actual results show that the ADRC can not only achieve a higher response speed without a overshoot
and its low-speed step response time can be shortened and the low-speed smoothness be improved.When it runs in 0.005 ()/s
the system settling time is 1 s
the standard deviation of velocity fluctuation is 0.000 082 ()/s (maximum in 0.000 42 ()/s).The results demonstrate that the performance of the ADRC is better than that of the traditional PID controller. Experimental results show that the ADRC can inhibit friction
saturation and other nonlinear factors
and can improve the speed performance of the telescope servo system.
程景全.天文望远镜原理和设计(射电、红外、光学、X射线和射线望远镜)[M]. 北京:中国科学技术出版社,2003. CHENG J Q. Principles of Astronomical Telescope Design from Radio, Infrared, Optical, X-ray to Gamma Ray Telescope[M]. Beijing: China Science & Technology Press, 2003. (in Chinese)[2] ERM T.Analysis of tracking performance[J].SPIE,2871:1032 -1040.[3] MANCINI D, BRESCIA M, CASCONE E, et al..A variable structure control law for telescopes pointing and tracking in acquisition, tracking, and pointing[J].SPIE, 1997, 3086:72-84.[4] MANCINI D, CASCONE E, SCHIPANI P.Telescope control system stability study using a variable structure controller[J].SPIE, 1998, 3351:165-171.[5] 汪达兴,杜福嘉. 大型天文望远镜摩擦传动系统低速特性的研究[J]. 光学 精密工程,2006,14(2):274-278. WANG D X, DU F J. Ultra-low speed research on friction drive for astronomical telescope[J]. Opt. and Precision Eng., 2006,14(2):274-278. (in Chinese)[6] 张斌,李洪文,郭立红,等. 变结构PID在大型望远镜速度控制中的应用[J]. 光学 精密工程,2010,18(7):1613-1619. ZHANG B, LI H W, GUO L H, et al.. Application of variable structure PID in velocity control for large telescope[J].Opt. Precision Eng., 2010,18(7):1613-1619. (in Chinese)[7] 熊凯,范永坤,吴钦章. 变结构PI控制器的设计及其在光电跟踪系统中的应用[J]. 光学 精密工程,2010,18(8):1855-1861. XIONG K, FAN Y K, WU Q ZH. Design of a variable structure PI controller and its application in photoelectronic tracking systems[J]. Opt. and Precision Eng., 2010.18(8):1855-1861. (in Chinese)[8] 周旺平,徐欣圻. 大型天文光学望远镜超低速跟踪控制[J]. 光电工程,2007,34(11):1-4. ZHOU W P, XU X Q. Ultra-lower velocity control of large-scale optical astronomical telescope[J]. Opto-Electronic Engineering, 2007, 34(11): 1-4. (in Chinese)[9] 杨文淑,张以谟,马佳光. 扰动跟踪控制系统设计与仿真[J]. 光电工程,2002,29(2):10-12. YANG W SH, ZHANG Y M, MA J G. Design and simulation for disturbance tracking and control system[J]. Opto-Electronic Engineering, 2002, 29(2):10-12. (in Chinese)[10] 翟军红,王红宣,陈娟,等. 大口径光电望远镜风阻力矩自抗扰补偿研究[J]. 光电工程,2007,34(12):13-16. ZHAI J H, WANG H X, CHEN J, et al.. Transfer function identification in a fast steering mirror system[J]. Opto-Electronic Engineering, 2007, 34(12):13-16. (in Chinese)[11] 邱晓波,窦丽华,单东升,等. 光电跟踪系统自抗扰伺服控制器的设计[J]. 光学 精密工程,2010,18(1):220-226. QIU X B, DOU L H, SHAN D SH, et al.. Design of active disturbance rejection controller for electro-optical tracking servo system[J]. Opt. and Precision Eng., 2010,18(1): 220-226. (in Chinese)[12] 廉明,韩振宇,富宏亚. 自抗扰技术在卫星姿态模拟系统中的应用[J]. 光学 精密工程,2010,18(3):616-622. LIAN M, HAN ZH Y, FU H Y. Application of active disturbances rejection control technique to satellite attitude simulation system[J]. Opt. Precision Eng., 2010, 18(3): 616-622. (in Chinese)[13] 韩晶清. 从PID技术到"自抗扰控制"技术[J]. 控制工程,2002,9(3):13-18. HAN J Q. From PID technique to active disturbance rejection control technique[J]. Control Engineering of China, 2002, 9(3):13-18. (in Chinese)[14] 黄一,张文革. 自抗扰控制器的发展[J]. 控制理论与应用,2002,19(4):485-492. HUANG Y, ZHANG W G. Development of active disturbance rejection controller[J]. Control Theory and Applications, 2002, 19(4): 485-492. (in Chinese)[15] GAO ZH Q,HUANG Y,HAN J Q.An alternative paradigm for control system design .Proceedings of the 40th IEEE Conference on Decision and Control,Orlando, Florida, USA, 2001, 5: 4578-4585.[16] MIKLOSOVIC R,GAO ZH Q.A robust two-degree-of-freedom control design technique and its practical application .Proceedings of the 39th ISA Annual Conference on Industry Applications, Seattle, Wash, USA: IAS,2004:1495-1502.
0
浏览量
332
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构