浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2010-09-13,
修回日期:2010-11-18,
网络出版日期:2011-11-25,
纸质出版日期:2011-11-25
移动端阅览
杨林, 郑贤良, 陈波. 基于反射镜表面粗糙度计算极紫外望远镜分辨率[J]. 光学精密工程, 2011,19(11): 2565-2572
YANG Lin, ZHENG Xian-liang, CHEN Bo. Calculation of resolution for EUV telescope based on surface roughness of mirrors[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2565-2572
杨林, 郑贤良, 陈波. 基于反射镜表面粗糙度计算极紫外望远镜分辨率[J]. 光学精密工程, 2011,19(11): 2565-2572 DOI: 10.3788/OPE.20111911.2565.
YANG Lin, ZHENG Xian-liang, CHEN Bo. Calculation of resolution for EUV telescope based on surface roughness of mirrors[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2565-2572 DOI: 10.3788/OPE.20111911.2565.
针对短波段成像系统中的散射问题
提出了一种基于反射镜表面粗糙度来计算极紫外太阳望远镜工作波段分辨率的方法。首先分析了两镜系统中散射光线的传播
讨论了反射镜表面粗糙度相对波长的比值与像面光强分布的关系。分频段测量了反射镜的表面粗糙度
利用
k
-相关模型拟合出全频段的一维功率谱密度(PSD)。数值计算结果表明:在1/
D
到1/
(
为入射光波长)的空间频率范围内
主次镜的有效均方根表面粗糙度分别为0.59 nm和0.77 nm。利用Zemax光学设计软件
建立了包含反射镜表面粗糙度测量数据的极紫外(EUV)望远镜非序列模型
该计算模型能够反映出反射镜表面散射对像面分辨率的影响
结果显示
在30.4 nm波段
包含80%的能量半径从3.9 m增大到4.3 m
望远镜在工作波段相应的分辨率为0.25
满足设计要求。
According to the surface scattering of a mirror surface at the short wavelength band
a resolution calculation method based on the surface roughness of mirror was presented for an Extreme Ultraviolet(EUV) telescope. First
the propagation of scatter light in two mirror systems was analyzed in details
and the relationship between the distribution of light energy on focal plane and the ratio of mirror surface roughness to wavelength was discussed. The surface roughness of the mirror was measured in different wavelength bands and the one-dimensional Power Spectral Densities(PSDs)on all relative spatial frequency ranges were fitted by a
k
-relevant model. The numerical results show that the effective RMS surface roughnesses of primary and secondary mirrors are 0.59 nm and 0.77 nm in the spatial frequency from 1 /
D
(D is the diameter of the mirror)to 1 /
( is an incident wavelength). The optical design software Zemax was used to build a non-sequence model of EUV telescope which contains the information about mirror surface roughness. This model can reveal the behavior of scatter light on the mirror surface and can calculate the resolution of the image plane. The results indicate that the radius of 80% energy changes from 3.9 m to 4.3 m and the corresponding angular resolution of the telescope is 0.25. This method is convenient
effective and suitable for imaging evaluation.
STOVER J C. Optical Scattering-measurement and Analysis[M]. SPIE Press,1995.[2] HARVEY J E, KRYWONONS A, STOVER J C. Unified scatter model for rough surface at large incident and scattered angles[J]. SPIE, 2007, 6672: 66720C1-C8.[3] MARTINEZ-GALARCE D S, BOERNER P, SOUFLI R, et al..The high-resolution lightweight telescope for the EUV (HiLiTE)[J]. SPIE, 2008,7011:70113k-1-12.[4] MARTINEZ-GALARCE D S, WALKER A B C, GORE D B, et al.. High resolution imaging with multilayer telescope: resolution performance of the MSSTAⅡ telescopes[J].Opt. Precision Eng., 2000,39(4): 1063-1079.[5] DEFISE J M, MOSES J D,CATURA R C. Calibration of EIT instrument for the SOHO mission[J].SPIE,1995,2517: 29-39.[6] 陈波,尼启良,曹建林等, 空间软X射线/极紫外波段正入射望远镜研究[J] 光学精密工程,1997,7(5):89-94. CHEN B, NI Q L, CAO J H, et al.. Development of a space soft X-ray and EUV normal incidence telescope[J]. Opt. Precision Eng., 1999,7(5):89-94.(in Chinese)[7] 陈波,尼启良,王建林. 长春光机所软X射线一极紫外波段光学研究 [J].光学精密工程,2007,15(12):1862-1868 CHEN B, NI Q L, WANG J L. Soft X-ray and extreme ultraviolet optics in CIOMP[J]. Opt. Precision Eng.,2007, 15(12): 1862-1868.[8] 高亮. 极紫外太阳望远镜装调与检测技术研究 .北京:中国科学院研究生院, 2009:24-34 GAO L. Study on the technique of alignment and imaging performance test of EUV solar telescope . Beijing:Chinese Academy of Sciences, 2009:24-34.(in Chinese)[9] THOMPSON P L, HARVEY J E. System engineering analysis of aplanatic Wolter typeⅠX-ray telescopes[J].Opt. Precision Eng.,2000,39:1677-1691.[10] LCHURCH E,TAKACS P Z. Light scatteringfrom non-Gaussian surface[J]. SPIE, 1995,2541:91-107.[11] NICODEMUS F E. Reflectance nomenclature and directional reflectance and emissivity[J]. Applied Optics, 1970,9:1474-1475.[12] GULLIKSON E M. Scattering from normal incidence EUV optics[J]. SPIE, 1998,3331:72-80.[13] CHURCH E L. Fractal surface finishparameters[J]. Applied Optics, 1988,27:1518-1526.[14] HARVEY J E, CHOI N, KRYWONONS A. Calculation BRDFs from surface PSDs for moderately rough optical surface[J]. SPIE, 2010, 7426:7426011-7426019.[15] DITTMAN M G. K-correlation power spectral density & surface scatter model[J]. SPIE, 2010, 6291:62910R1-R12.[16] GANGADHARA S. How to model surface scattering via the K-correlation distribution . http://www.Zemax.com/KB[17] HARVERY J E, ZMEK W P, FTACLAS C. Imaging capabilities of normal-incidence X-ray telescope[J]. Opt. Precision Eng., 1990, 29: 603-608.[18] WALKER B C, LINDBLOM J F, O'NEAL R H, et al.. Multi-spectral solar telescope array[J]. Optical Engineering, 1990, 29: 581-591.[19] PODGORSKI W A, CHEIMETS P N, BOERNER P. et al.. SDO-AIA mirror performance[J]. SPIE, 2009, 7438:74380F1-F13.
0
浏览量
1262
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构