浏览全部资源
扫码关注微信
江西师范大学 物理与通信电子学院,江西 南昌,330022
收稿日期:2011-05-23,
修回日期:2011-07-08,
网络出版日期:2011-11-25,
纸质出版日期:2011-11-25
移动端阅览
袁文, 桑明煌, 郭琴, 况庆强. 基于亚毫米尺度波导研究磁流体的窄带滤波特性[J]. 光学精密工程, 2011,19(11): 2618-2622
YUAN Wen, SANG Ming-huang, GUO Qin, KUANG Qing-qiang. Research on narrow band filter of magnetic fluid based on optical waveguide with submillimeter scale[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2618-2622
袁文, 桑明煌, 郭琴, 况庆强. 基于亚毫米尺度波导研究磁流体的窄带滤波特性[J]. 光学精密工程, 2011,19(11): 2618-2622 DOI: 10.3788/OPE.20111911.2618.
YUAN Wen, SANG Ming-huang, GUO Qin, KUANG Qing-qiang. Research on narrow band filter of magnetic fluid based on optical waveguide with submillimeter scale[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2618-2622 DOI: 10.3788/OPE.20111911.2618.
利用一种样品空间层达亚毫米尺度的双面金属波导
将磁流体注入波导样品空间层作为导波层来研究磁流体的窄带滤波特性。首先将波长为1 550 nm的激光入射到波导表面
选择合适的入射光导模共振角
激发波导中的超高阶导模
使磁流体处于光波导的振荡场中;然后
应用超高阶导模的高灵敏度特点
将磁场施加在波导上改变磁流体的折射率
使波导耦合效率发生变化
通过接收波导反射光
得到波导的窄带滤波特性。实验中测试的入射光波长调谐在1 549.440~1 549.585 nm
窄带滤波带宽为0.06 nm。当波长为1 549.516 nm
所加磁场为0~51.9 kA/m时
获得反射光的变化达到11.9 dB。实验结果表明
该方法获得的滤波特性具有带宽窄、灵敏度高的特点。
A type of ultrathick double metal cladding optical waveguide with a submillimeter scale was used to investigate the narrow bandwidth filter of magnetic fluid
in which the magnetic fluid were injected into the sample as a guided layer. While the 1 550 nm laser beam was incident on the waveguide with resonance angle
ultrahigh order modes would be excited; the magnetic fluid was in the oscillating field. Then based on ultrahigh order modes
the refractive index of magnetic fluid was changed owing to the strong concentration of the magnetic field. The characteristics of narrow bandwidth filter were obtained by detecting the reflected beam on waveguide. In the experiment
the wavelength of the incidence beam was to be form 1 549.440 nm to 1 549.585 nm
and the bandwidth filter to be 0.06 nm. Obtained results show that the change of reflected beam is 11.9 dB when the magnetic field changed from 0 to 51.9 kA/m in the wavelength of 1 549.516 nm. Experimental results indicate that the optical filter has narrow waveband and higher sensitivity.
曹庄琪. 导波光学[M]. 北京:科学出版社, 2007:96-103. CAO ZH Q. Waveguide Optical[M]. Beijing: Science Press, 2007:96-103(in Chinese).[2] LI H G, CAO ZH Q, LU H F, et al.. Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide[J]. Applied Physics Letters, 2003,83 (14): 2757-2759.[3] LU H F, CAO ZH Q, LI H G , et al.. Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide[J]. Appl. Phys. Lett., 2004,85(20):4579-4581.[4] CAO Z Q, CHEN G. Low voltage electro-optical polymer light modulator using attenuated total internal reflection[J].Optical & Laser Technology, 2001,33(9):417-420.[5] CAO Z Q, SHEN Q S. Improved attenuated-total-reflection technique for measuring the electro-optic coefficients of nolinear optical polymers[J]. J.Opt.Soc.Am.B, 2000, 17(5):805-808.[6] 曹庄琪,陆海峰,李红根,等. 亚毫米尺度双面金属波导的超高阶模及其滤波特性研究[J]. 光学学报. 2006,26(4):497-500. CAO ZH Q, LU H F, LI H G, et al.. Research of ultrahigh order modes in double metal cladding optical waveguide with submillimeter scale[J]. Acta Optica Sinica, 2006, 26(4):497-500.(in Chinese)[7] 李小奇,孙德贵. 平面波导窄带干涉滤波方法的研究[J]. 光学精密工程,2007,15(4):467-472 LI X Q, SUN D G. Investigation on interference filter within planar waveguides[J]. Opt. Precision Eng., 2007,15(4): 467-472.(in Chinese)[8] YAMAGUCHI H, ZHANG X R, HIGASHI S, et al.. Study on power generation using electro-conductive polymer and its mixture with magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (7):1406-1411.[9] NEUBERGERA T, SCHOPF B, HOFMANN H, et al.. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system[J]. Journal of Magnetism and Magnetic Materials, 2005, 293(3) : 483-496.[10] 王鸿云,高春甫,阚君武,等. 磁场作用下磁流变液的挤压与拉伸特性[J]. 光学 精密工程,2011,19(4):850-856. WANG H Y,GAO CH P,KAN J W, et al.. Compressive and tensive characteristics of magnetorheological fluid under magnetic fields[J]. Opt. Precision Eng., 2011,19(4):850-856.(in Chinese)[11] CHIEH J J, YANG S Y, HORNG H E, et al.. Magnetic-fluid optical-fiber modulator via magnetic modulation[J]. Appl Phys Lett., 2007,90 (13):133505-1-3.[12] PU S L, CHEN X F, DI Z Y, et al.. Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator[J]. J. Appl. Phys., 2007,101(5):053532-1-5.[13] CHEN J F, CHEN X F, PU S L, et al.. Realization of optical limiting with a magnetic fluid film[J]. Opt. Commun., 2007,276 (2):268-271.[14] 胡涛,赵勇,吕志伟,等. 光纤磁流体F-P电磁场传感器[J]. 光学 精密工程,2009,17(10):2445-2449. HU T, ZHAO Y, LU ZH W, et al.. Fiber optic electromagnetic sensor based on magnetic fluid[J]. Opt. Precision Eng., 2009,17(10):2445-2449.(in Chinese)[15] 袁文,聂义友,桑明煌,等. 双面金属波导参数对ATR吸收峰的影响分析[J], 江西师范大学学报,2006,30(5):409-412. YUAN W,NIE Y Y,SANG M H, et al..The influence of ATR absorption peak upon double metal waveguide parameter[J]. Journal of Jiangxi Normal University, 2006,30(5):409-412.(in Chinese)
0
浏览量
316
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构