浏览全部资源
扫码关注微信
1. 宁波大学 机械工程与力学学院,浙江 宁波,315211
2. 重庆科技学院 机械与动力工程学院 重庆,401331
3. 东北大学 工学院,日本 宫城 仙台,980-8579
收稿日期:2011-02-28,
修回日期:2011-03-23,
网络出版日期:2011-11-25,
纸质出版日期:2011-11-25
移动端阅览
崔玉国, 何高法, 荒井義和, 高伟. 快速大面积测量用原子力显微镜扫描速度对测量结果的影响[J]. 光学精密工程, 2011,19(11): 2636-2643
CUI Yu-guo, HE Gao-fa, ARAI Yoshikazu, GAO Wei. Effects of scanning speed on measurement results for high-speed and large-area measurement AFM[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2636-2643
崔玉国, 何高法, 荒井義和, 高伟. 快速大面积测量用原子力显微镜扫描速度对测量结果的影响[J]. 光学精密工程, 2011,19(11): 2636-2643 DOI: 10.3788/OPE.20111911.2636.
CUI Yu-guo, HE Gao-fa, ARAI Yoshikazu, GAO Wei. Effects of scanning speed on measurement results for high-speed and large-area measurement AFM[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2636-2643 DOI: 10.3788/OPE.20111911.2636.
构建了一种可快速大面积测量光栅表面微结构的原子力显微镜(AFM)系统
研究了不同扫描模式下扫描速度对测量结果的影响。分别测量了微悬臂探针在恒高模式与恒力模式下的频谱
获得了这两种模式下微悬臂探针的有效带宽。基于恒高模式与恒力模式
在不同扫描速度下分别测量了光栅微结构表面上的一条直线与一个圆周
进而分析了扫描速度对测量结果的影响。基于该AFM系统
采用恒高模式下不失真扫描速度对光栅微结构表面进行了快速、大面积三维形貌测量实验。实验结果表明:测量光栅微结构表面上直径为4.0 mm的圆形区域所用时间仅为40 s。当扫描速度不超过微悬臂探针有效带宽所对应的速度时
所构建的AFM系统可无失真地实现微结构表面的快速、大面积测量。
An Atomic Force Microscope (AFM) system with high-speed and large-area was constructed to measure the micro-structure surface of an optical grating. The effects of scanning speed on measuring results under different scanning modes were researched. First
the spectra of the micro-probe under constant-height and constant-force modes were measured
respectively
and the effective bandwidths of the probe were obtained under the two modes. Then
based on the constant-height and constant-force modes
the effects of scanning speed on measuring results were analyzed via measuring a line and a circle on the surface of the optical grating at different scanning speeds. By employing this AFM system
the 3-dimensional profile of the large-area micro-structure surface on the optical grating was measured at a distortionless scanning-speed in a constant-height mode. The results show that it takes only 40 s to measure a circle area with a diameter of 4.0 mm on the grating surface. When the scanning speed is no more than the speed that is corresponding to the effective bandwidth of the micro-probe
the AFM system can achieve the high-speed
large-area and distortionless measurement for micro-structure surfaces.
YAMASAKI F, DEGUCHI M, KAKUDA T, et al.. High efficiency optical system design for a liquid crystal projector[J]. IEEE Transactions on Consumer Electronics, 2000, 46: 851-856.[2] CHOU M C, PAN C T, SHEN S C, et al.. A novel method to fabricate gapless hexagonal micro-lens array[J]. Sensor and Actuator A: Physical, 2005, 118(2): 298-306.[3] GAO W, ARAKI T, KIYONO S Y. et al.. Precision Nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder[J]. Precision Engineering, 2003, 27(3): 289-298.[4] GAO W, DEJIMA S, YANAI H, et al.. A surface motor-driven planar motion stage integrated with an XY(Z Surface Encoder for Precision Positioning[J]. Precision Engineering, 2004, 28(3): 329-337.[5] BOUSSU K, BRUGGEN B V, VOLODIN A, et al.. Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM[J]. Journal of Colloid Interface Science, 2005, 286(2): 632-638.[6] CHECCO A, CAI Y G, GANG O, et al.. High resolution non-contact AFM imaging of liquids condensed onto chemically nanopatterned surfaces[J]. Ultramicroscopy, 2006, 106(8-9): 703-708.[7] LEI S B, TERO R, MISAWA N, et al.. AFM characterization of gramicidin-A in tethered lipid membrane on silicon surface[J]. Chemical Physics Letters, 2006, 429(1-3): 244-249.[8] 彭光含,杨学恒,刘济春,等. 一种高精度多功能双用原子力显微镜技术及应用[J]. 仪器仪表学报, 2008,29(1):179-184. PENG G H, YANG X H, LIU J CH, et al.. Technology and application of a new-style high-resolution capability multifunctional amphibious atomic force microscope[J]. Chinese Journal of Scientific Instrument, 2008, 29(1): 179-184. (in Chinese)[9] KAROUSSI O, SKOVBJERG L L, HASSENKAM T, et al.. AFM study of calcite surface exposed to stearic and heptanoic acids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 325(3): 107-114.[10] MULLER D J, ENGEL A. Strategies to prepare and characterize native membrane proteins and protein membranes by AFM[J]. Current Opinion in Colloid & Interface Science, 2008, 13(3): 338-350.[11] LYUBCHENKO Y L, SHLYAKHTENKO L S. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes[J]. Methods, 2009, 47(3): 206-213.[12] 王昭,吴世法,刘琨. 使用自激振荡法提高原子力光子扫描隧道组合显微镜的扫描速度[J]. 光学 精密工程,2010,18(4):906-912. WANG ZH, WU SH F, LIU K. Self-oscillating electronics for improving scanning speed in AF/PSTM[J]. Opt. Precision Eng., 2010, 18(4): 906-912. (in Chinese)[13] EGAWA A, CHIBA N, HOMMA K, et al.. High speed scanning by dual feedback control in SNOM/AFM[J]. Journal of Microscopy, 1999, 194(2-3): 325-328.[14] 景蔚萱, 蒋庄德. 原子力显微镜(AFM)在光盘检测及其质量控制中的应用[J]. 光学 精密工程,2003,11(4):368-373. JING W F, JIANG ZH D. Measurement and quality control of optical discs with atomic force microscope (AFM)[J]. Opt. Precision Eng. 2003, 11(4): 368-373. (in Chinese)[15] KIM Y S, NAM H J, CHO S M, et al.. PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM[J]. Sensors and Actuators A, 2003, 103(1-2): 122-129.[16] 霍德鸿,梁迎春,程凯,等. 基于原子力显微镜和分子动力学的纳米压痕技术研究[J]. 机械工程学报,2004,40(6):39-44. HUO D H, LIANG Y CH, CHENG K, et al.. Study on the nanoindentation via atomic force microscope and molecular dynamics simulation[J]. Chinese Journal of Mechanical Engineering, 2004, 40(6): 39-44. (in Chinese)[17] SCHITTER G, STEMMER A. Identification and open loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 449-454.[18] ROGERS B, MANNING L, SULCHEK T, et al.. Improving tapping mode atomic force microscopy with piezoelectric cantilevers[J]. Ultramicroscopy, 2004, 100(3-4): 267-276.[19] BARTH C,PAKARINEN O H, FOSTER A S, et al.. Imaging nanoclusters in the constant height mode of the dynamic SFM[J]. Nanotechnology, 2006, 17(S7): 128-136.[20] 赵学增,李宁,周法权,等. 使用原子力显微镜测量刻线边缘粗糙度的影响因素[J]. 光学 精密工程,2009,17(4):839-848. ZHAO X Z, LI N, ZHOU F Q, et al.. Influence factors of line edge roughness measured by AFM[J]. Opt. Precision Eng., 2009, 17(4): 839-848. (in Chinese)[21] AOKI J. High-precision measurement of large area 3-dimensional micro-structured surfaces using atomic force microscope systems . Sendai: Tohoku University in Japan, 2006. (in Japanese)
0
浏览量
333
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构