浏览全部资源
扫码关注微信
中国科学院 电工研究所微纳加工研究部, 北京 100190
收稿日期:2011-01-22,
修回日期:2011-02-20,
网络出版日期:2011-11-25,
纸质出版日期:2011-11-25
移动端阅览
殷伯华, 陈代谢, 林云生, 初明璋, 韩立. 高速大扫描范围原子力显微镜系统的设计[J]. 光学精密工程, 2011,19(11): 2651-2656
YIN Bo-hua, CHEN Dai-xie, LIN Yun-sheng, CHU Ming-zhang, HAN Li. Design of AFM system with high speed and large scanning range[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2651-2656
殷伯华, 陈代谢, 林云生, 初明璋, 韩立. 高速大扫描范围原子力显微镜系统的设计[J]. 光学精密工程, 2011,19(11): 2651-2656 DOI: 10.3788/OPE.20111911.2651.
YIN Bo-hua, CHEN Dai-xie, LIN Yun-sheng, CHU Ming-zhang, HAN Li. Design of AFM system with high speed and large scanning range[J]. Editorial Office of Optics and Precision Engineering, 2011,19(11): 2651-2656 DOI: 10.3788/OPE.20111911.2651.
针对目前高速扫描型原子力显微镜(AFM)主要是限于物检测且扫描速度和扫描范围均有待提高
提出了一种高速原子力显微镜结构设计方案。在压电陶瓷致动器驱动的柔性铰链结构式位移台的基础上
构建了AFM大范围扫描器
使原子力显微镜在
x-y
扫描方向的运动范围达到了100 m100 m。通过傅里叶频谱分析
计算获得了AFM扫描器常用的三角波驱动信号和正弦波驱动信号的高次谐波特性及其对AFM高速扫描成像的影响程度。为了消除在扫描运动过程中的机械自激振荡
提出了将正弦波信号作为高速扫描的驱动信号
行扫速度达到50 line/s。在正弦波驱动的基础上提出了一种基于位置采样的图像获取方法
有效地减小了AFM扫描器的非线性误差造成的图像畸变现象。
As current high-speed scanning Atomic Force Microscope (AFM) is mainly designed for the biological imaging application and its scanning speed and scanning range should be improved
a novel high speed AFM was designed. Based on the flexure guide structure driven by piezo actuators
the AFM scanner with a large range was proposed
by which the AFM scanning range is expanded to 100 m100 m in the
x-y
directions. By the Fourier expansion
the high harmonic characteristics of the common triangle and sinusoidal driving signals were analyzed
and their effects on the high speed scanning image were discussed. To avoid the mechanical self-oscillation of the stage during scanning
the sinusoidal driving signal was taken to drive the high speed scanning and the line-scan speed was up to 50 line/s. Finally
a new method to eliminate AFM nonlinearity error based on positioning sampling was designed. This method effectively reduces the image distortion resulted from nonlinear errors of the AFM scanner.
TOSHIO A, NORIYUKI K. A high-speed atomic force microscope for studying biological macromolecules[J]. PNAS, 2001, 98(22): 12468-12472.[2] BINNING G, ROHRER G. Atomic force microscope[J]. Physical Review Letters,1986, 56: 930-933.[3] 闫永达,费维栋,胡振江,等. 基于单片机的AFM 纳米机械性能测试系统[J]. 光学 精密工程,2008,16(7): 1223-1229. YAN Y D, FEI W D, HU ZH J, et al.. SCM-based nanomechanical property measurement system of AFM[J]. Opt. Precision Eng., 2008,16(7): 1223-1229.(in Chinese)[4] KOBAYASHI M, SUMITOMO K, TORIMITSU K. Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope[J]. Ultramicroscopy,2007,107:184-190.[5] CRAMPTON N, YOKOKAWA M, DRYDEN D T F, et al.. Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping[J]. PNAS, 2007, 104(31): 12755-12760.[6] UKRAINTSEV V A, BAUM C, ZHANG G, et al.. The role of AFM in semiconductor technology development[J].SPIE 2005, 5752: 127-139.[7] LEE M. Applications of AFM in semiconductor R&D and manufacturing at 45 nm technology node and beyond[J]. SPIE, 2009, 7272: 736-741.[8] KURIHARA M. Gate CD control considering variation of gate and STI structure[J]. IEEE Transactions on Semiconductor Manufacturing, 2007, 20(3): 232-238.[9] 袁帅, 董再励, 缪磊,等. AFM扫描图像重构算法的改进[J]. 纳米技术与精密工程,2009, 7(3): 259-264. YUAN SH, DONG Z L, MIAO L, et al.. Improvement of reconstruction algorithm of AFM scanning images[J]. Nanotechnology and Precision Engineering, 2009, 7(3): 259-264. (in Chinese)[10] SCHITTER G, THURNER P J, HANSMA P K. Design and input-shaping control of a novel scanner for high-speed atomic force microscopy[J]. Mechatronics, 2008, 18: 282-288.[11] 张栋, 张承进, 魏强. 压电微动工作台的动态迟滞模型[J]. 光学 精密工程, 2009, 17(3): 549-556. ZHANG D, ZHANG CH J, WEI Q. Dynamic hysteresis model of piezopositioning stage[J]. Opt. Precision Eng., 2009, 17 (3): 549-556. (in Chinese)[12] 党选举. 压电陶瓷执行器的神经网络实时自适应逆控制[J]. 光学 精密工程, 2008, 16(7): 1266-1272. DANG X J. Real-time adaptive inverse control based on neural networks for piezoceramic actuator[J]. Opt. Precision Eng., 2008,16(7): 1266-1272. (in Chinese)
0
浏览量
338
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构