浏览全部资源
扫码关注微信
1. 南京航空航天大学 机电学院,江苏 南京,210016
2. 南京工程学院 机械学院,江苏 南京,211167
收稿日期:2011-03-25,
修回日期:2011-05-26,
网络出版日期:2011-12-25,
纸质出版日期:2011-12-25
移动端阅览
葛英飞, 徐九华, 傅玉灿. 高速铣削SiC<sub>p</sub>/Al复合材料时聚晶金刚石刀具的磨损机理[J]. 光学精密工程, 2011,19(12): 2907-2918
GE Ying-fei, XU Jiu-hua, FU Yu-can. Wear mechanisms of PCD tool in high-speed milling of SiC<sub>p</sub>/Al composites[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 2907-2918
葛英飞, 徐九华, 傅玉灿. 高速铣削SiC<sub>p</sub>/Al复合材料时聚晶金刚石刀具的磨损机理[J]. 光学精密工程, 2011,19(12): 2907-2918 DOI: 10.3788/OPE.20111912.2907.
GE Ying-fei, XU Jiu-hua, FU Yu-can. Wear mechanisms of PCD tool in high-speed milling of SiC<sub>p</sub>/Al composites[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 2907-2918 DOI: 10.3788/OPE.20111912.2907.
采用聚晶金刚石刀具(PCD)
以600~1200 m/min速度对SiC
p
/2009Al复合材料进行了高速铣削试验
研究了铣削时PCD刀具的磨损机理。使用扫描电镜(SEM)观察加工材料表面和刀具前/后刀面磨损带
X射线衍射仪分析已加工表面物相
并使用能谱(EDS)和激光拉曼谱对后刀面磨损带进行元素分析。结果表明
增强颗粒碳化硅的高频刻划和冲击是导致刀具晶粒脱落、磨粒磨损、崩刃、剥落的主要机制
切削高体积分数增强铝基复合材料、经热处理的复合材料或使用更高的切削速度时
PCD刀具会产生明显微裂纹。另外
增强颗粒体积分数是影响PCD刀具磨损的最显著因素
增强颗粒尺寸、工件材料热处理状态、刀具材料晶粒尺寸和冷却条件对刀具磨损均有显著影响。PCD刀具刀的寿命在70~240 min之间。结论认为
增强颗粒机械冲击、切削振动和热冲击的综合作用是刀具产生微裂纹的主要原因。在高速铣削时的高温、高压下
工件材料中的铝元素和铜元素会向刀具有一定程度的扩散
PCD刀具在铜元素的催化作用下会发生轻微的石墨化磨损。
Milling tests for SiC
p
/2009Al composites were performed by using Polycrystal Diamond(PCD) tools at the cutting speed of 600-1 200 m/min and the mechanisms of tool wear were investigated. A Scanning Electron Microscope (SEM) was used to examine the machined surfaces and tool wear land
an X-ray diffractometer (XRD) was used to analyze the substances on the machined surface and the laser Raman spectra and Energy Density Spectrometry(EDS) were taken to analyze the elements on the tool wear land. The results show that the tool grain breaking-off
abrasive wear
chipping and the peeling caused by the high frequency impact and the scrapt of SiC particles are the prevalent wear patterns. When high volume fraction materials or heat treated materials are milled
or the milling is at a higher cutting speed
micro-cracks will form on the PCD tools. Furthermore
volume fractions
average sizes of SiC particles
tool grain sizes
cooling and heat treating conditions have significant influence on the tool wear. It concludes that the life of PCD tools is in the range of 70-240 min. The micro-cracks are produced on the tool flank under the combined effects of SiC particle impact
cutting vibration and heat impact. Moreover
the aluminum and copper can be diffused into the tool matrix under the very high cutting temperature and cutting forces and the trivial graphitization is taken place on the PCD tools due to the catalysis of copper in the aluminum matrix.
张剑寒,张宇民,韩杰才,等. 空间用碳化硅反射镜的设计制造与测试[J]. 光学 精密工程,2006,14(2):179-184. ZHANG J H, ZHANG Y M, HAN J C, et al. Design, fabrication and testing of space-borne SiC mirror[J]. Opt. Precision Eng., 2006, 14(2):179-184. (in Chinese)[2] 崔岩,李丽富,李景林,等. 制备空间光机结构件的高体份SiC/Al复合材料[J]. 光学 精密工程,2007,15(8):1175-1180. CUI Y, LI L F, LI J L, et al. High volume fraction SiC/Al composites for space-based optomechanical structures[J]. Opt. Precision Eng., 2007, 15(8):1175-1180. (in Chinese)[3] 林再文,刘永琪,梁岩,等. 碳纤维增强复合材料在空间光学结构中的应用[J]. 光学 精密工程,2007,15(8):1181-1185. LIN Z W, LIU Y Q, LIANG Y, et al. Application of carbon fibre reinforced composite to space optical structure[J]. Opt. Precision Eng., 2007, 15(8):1181-1185. (in Chinese)[4] 葛英飞, 徐九华, 杨辉. SiCp/Al 复合材料的超精密车削试验[J]. 光学 精密工程,2009,17(7):1621-1629. GE Y F, XU J H, YANG H. Experiments of ultra-precision turning of SiCp/Al composites[J]. Opt. Precision Eng., 2009, 17(7):1621-1629. (in Chinese)[5] EI-GALLAB M, SKLAD M. Machining of Al/SiC particulate metal matrix composites Part III: comprehensive tool wear models[J]. J. Mater. Process. Technol., 2000,101:10-20.[6] 全燕鸣, 周泽华. 不同颗粒度SiC增强铝基复合材料的切削加工性与适应刀具[J]. 材料科学与工程, 1996, 14(4):59-64. QUAN Y M, ZHOU Z H. Machinability of aluminium matrix composites reinforced by different size SiC particles and their applicable tools[J]. Materials Science & Engineering, 1996,14(4):59-64. (in Chinese)[7] 刘林海. 金属基复合材料的切削加工[J]. 武汉交通科技大学学报, 1994, 18(4):363-368. LIU L H. Cutting of metal matrix composites[J]. Journal of Wuhan Transportation University, 1994,18(4):363-368. (in Chinese)[8] XU J H, ZUO D W, YANG M D,et al.. Machining of metal matrix composites[J]. Trans. NUAA, 1995, 12(2):161-167.[9] IBRAHIM C, MEHMET T, ULVI S. Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites[J]. Materials and Design, 2004, 25:251-255.[10] 李丹, 闫国成. 颗粒增强铝基复合材料铣削加工实验研究[J]. 现代制造工程, 2007(3):15-17. LI D, YAN G C. Experimental study on milling machining of particle reinforced aluminum matrix composites[J]. Modern Manuf. Eng., 2007(3):15-17. (in Chinese)[11] 吴震宇, 王学根, 孙方宏,等. SiC颗粒增强铝基复合材料高速铣削工艺研究[J]. 工具技术, 2004, 38(3):15-17. WU ZH Y, WANG X G, SUN F H,et al.. An experimental research on the high-speed milling of SiC particle reinforced aluminum matrix composites[J]. Mach. Tool Technol., 2004,38(3):15-17. (in Chinese)[12] 许立福, 于晓琳, 周家林,等. PCD刀具高速铣削SiCp/Al复合材料的表面粗糙度研究[J]. 沈阳理工大学学报, 2009, 28(1): 41-43. XU L F, YU X L, ZHOU J L, et al. A study on the surface roughness for high speed milling SiCp/Al-matrix composite using PCD tools[J]. Trans. Shenyang Ligong University, 2009, 28(1):41-43.(in Chinese)[13] PAULO D J, PEDRO R. Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments[J]. J. Mater. Process. Technol., 2005, 160: 160-167.[14] NIEMINEN I, PARO J, KAUPPINEN V. High-speed milling of advanced materials[J]. Journal of Materials Processing Technology, 1996, 56:24-36.[15] SURESH K R, SHIN K S, MIN Y Y. Experimental study of surface integrity during end milling of Al/SiC particulate metal-matrix composites[J]. J. Mater. Process. Technol., 2008, 201:574-579.[16] XIAO X, LEV L C, LUKITSCH M J. Material transfer during machining of aluminum alloys with polycrystalline diamond cutting tools[J]. J. Mater. Process. Technol., 2009, 209:5760-5765.[17] MASAO U.An analysis of the catalysis of Fe, Ni or Co on the wear of diamonds[J]. Tribology International, 2004, 37:887-892.[18] 赵玉厚, 肖纯芳, 李建平,等. 热处理对SiCp/ZL102复合材料力学和物理性能的影响[J]. 西安工业学院学报,1996,16(2):157-160. ZhAO Y H, XIAO CH F, LI J P, et al. Heat treatment effect on the mechanics and physics performance of SiCp/ZL102 composite[J]. Journal of XIan Institute of Technology, 1996,16(2):157-160.(in Chinese)
0
浏览量
603
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构