浏览全部资源
扫码关注微信
大连理工大学 机械工程学院,辽宁 大连,116024
收稿日期:2011-05-23,
修回日期:2011-06-21,
网络出版日期:2011-12-25,
纸质出版日期:2011-12-25
移动端阅览
褚金奎, 陈兆鹏, 张然. 集成铜金属压阻层的SU-8胶悬臂梁微力传感器的制作[J]. 光学精密工程, 2011,19(12): 2935-2940
CHU Jin-kui, CHEN Zhao-peng, ZHANG Ran. Microfabrication of SU-8 cantilever micro-force sensor integrated by copper piezoresistance[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 2935-2940
褚金奎, 陈兆鹏, 张然. 集成铜金属压阻层的SU-8胶悬臂梁微力传感器的制作[J]. 光学精密工程, 2011,19(12): 2935-2940 DOI: 10.3788/OPE.20111912.2935.
CHU Jin-kui, CHEN Zhao-peng, ZHANG Ran. Microfabrication of SU-8 cantilever micro-force sensor integrated by copper piezoresistance[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 2935-2940 DOI: 10.3788/OPE.20111912.2935.
由于SU-8胶的弹性模量比硅的低
在SU-8胶悬臂梁上集成金属压阻可获得很高的力灵敏度系数
因此本文基于SU-8胶设计并制作了一种集成蛇形结构铜金属压阻层的SU-8胶悬臂梁微力传感器。介绍了制作微力传感器的新型工艺
并进行了传感器性能测试。实验结果表明:设计的SU-8胶微力传感器在0~350 N具有较好的线性度
力灵敏度为0.24 mV/N
测量误差为4.06%。该微力传感器可以满足对微小力的测量
相对于硅材料的微力传感器
其制作工艺更加简单
周期更短。由于SU-8胶的生物兼容性好
该传感器在生物医学研究领域有着很好的应用前景。
As the SU-8 cantilever integrated by a metal piezoresistance can achieve a very high force sensitive coefficient due to its low elastic modulus
this paper designs a new type of SU-8 cantilever micro-force sensor integrated by a serpent-shaped copper piezoresistive structure and fabricates a prototype with a double-layer cantilever by a novel processing method. It introduces the design principles and fabrication method for the micro-force sensors and measures its technological parameters.Experimental results show that the SU-8 micro-force sensor has good linearity range in 0-350 N and its force sensitivity is 0.24 mV/N and measuring error is 4.06%. It can implement the micro-force detection and has advantages of simpler production process and shorter cycle as compared with a silicon micro-force sensor. Moreover
the force sensor has potential application in biomedical research for the SU-8 with prominent biological compatibility.
CHUDUC T, CREEMER J F, SARRO P M. Lateral nano-Newton force-sensing piezoresistive cantilever for microparticle handling[J]. J. Micromech. Microeng, 2006, 16:102-106.[2] VOSKERICIAN G, SHIVE M S, SHAWGO R S, et al. Biocompatibility and biofouling of MEMS drug delivery devices[J]. Biomaterials, 2003, 24:1959-1967.[3] 张立国,陈迪,杨帆,等. SU-8胶工艺研究[J]. 光学 精密工程,2002,10(3):266-269. ZHAN L G, CHEN D, YANG F, et al. Research on SU-8 resist photolithography process[J]. Opt. Precision Eng., 2002,10(3):266-269. (in Chinese)[4] 黄新龙,熊瑛,陈光焱,等. UV-LIGA技术制作微型螺旋形加速度开关[J]. 光学 精密工程,2010,18(5):1152-1158. HUANG X L, XIONG Y, CHEN G Y, et al. Fabrication of micro spiral acceleration switch using UV-LIGA technology[J]. Opt. Precision Eng., 2010,18(5):1152-1158. (in Chinese)[5] GENOLET G, BRUGGER J, DESPONT M, et al. Soft, entirely photoplastic probes for scanning force microscopy[J]. Review of Scientific Instruments, 1999, 70(5):2398-2401.[6] THAYSEN J, YALCINKAYA A D, VESTERGAARD R K, et al. SU-8 based piezoresistive mechanical sensor. The Fifteenth IEEE International Conference, 2002:320-323.[7] CALLEJA M, RASMUSSEN P, JOHANSSON A, et al. Polymeric mechanical sensors with integrated readout in a microfluidic system[J]. SPIE, 2003, 5116:314-321.[8] DOLL J C, NAHID H, KLEJWA N, et al. SU-8 force sensing pillar arrays for biological measurements[J]. Lab Chip, 2009, 9(10):1449-1462.[9] RASMUSSEN P A, THAYSEN J, BOUWSTRA S, et al. Modular design of AFM probe with sputtered silicon tip[J]. Sensors and Actuators A, 2001, 92:96-101.[10] WOUTERS K, PUERS R. Determining the Youngs modulus and creep effects in three different photo definable epoxies for MEMS applications[J]. Sensors and Actuators A, 2009, 156:196-200.[11] THAYSEN J, YALCINKAYA A D, VETTIGER P, et al. Polymer-based stress sensor with integrated readout[J]. Journal of Physics D, 2002, 35:2698-2703.
0
浏览量
156
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构