浏览全部资源
扫码关注微信
国防科学技术大学 ATR实验室,湖南 长沙 410073
收稿日期:2011-03-17,
修回日期:2011-04-15,
网络出版日期:2011-12-25,
纸质出版日期:2011-12-25
移动端阅览
唐永鹤, 卢焕章, 胡谋法. 基于Laplacian的局部特征描述算法[J]. 光学精密工程, 2011,19(12): 2999-3006
TANG Yong-he, LU Huan-zhang, HU Mou-fa. Local feature description algorithm based on Laplacian[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 2999-3006
唐永鹤, 卢焕章, 胡谋法. 基于Laplacian的局部特征描述算法[J]. 光学精密工程, 2011,19(12): 2999-3006 DOI: 10.3788/OPE.20111912.2999.
TANG Yong-he, LU Huan-zhang, HU Mou-fa. Local feature description algorithm based on Laplacian[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 2999-3006 DOI: 10.3788/OPE.20111912.2999.
为了更好地兼顾特征描述子的鲁棒性和生成复杂度
提出了一种基于Laplacian的局部特征描述算法。分析说明了Laplacian不仅对图像的欧氏变换、缩放及亮度线性变化具有较好的性质
而且能够反映图像的局部结构特征。据此利用高斯型拉普拉斯变换响应建立了一种64维特征描述子
并将该特征描述子应用于特征点匹配。匹配实验结果表明
在图像尺度缩放、旋转、模糊、亮度变化和较小视角变化等多种变换条件下
该描述子不仅能够取得较好的匹配效果
而且匹配速度是尺度不变特征变换(SIFT)的4倍以上。该算法适用于实时性要求较高
存在旋转、尺度缩放、亮度差异、图像压缩变换以及视角变化不大的结构图像间的匹配。
In order to balance the robustness and building complexity of a feature descriptor
a local feature description algorithm based on Laplacian is presented. It is analyzed and illustrated that the Laplacian not only has good properties to Euclidian transformation
zoom
and linear brightness changes of an image
but also can characterize the local structure of the image. On the basis of that
a 64-dimension descriptor is built with the response of Laplacian of Gaussian. Finally
the descriptor is used to match feature points with the absolute distance as similarity measurement. Simulation results indicate that the proposed descriptor can obtain better matching results for the image with zoom
rotation
blurring
illumination varying as well as smaller viewpoint changes
and the matching speed is more than 4 times that of Scale Invariable Feature Transformation(SIFT). The proposed feature description algorithm is suitable for matching the images of structured scenes
for it is insensitive to the image transformation with rotation
zoom
luminance varying
compression or small viewpoint changes.
杨晓敏, 吴炜, 卿粼波,等. 图像特征点提取及匹配技术[J]. 光学 精密工程, 2009,17(9):2276-2282. YANG X M, WU W, QING L B, et al. Image feature extraction and matching technology[J]. Opt. Precision Eng., 2009,17(9):2276-2282. (in Chinese)[2] 王会峰, 刘上乾,汪大宝,等. 基于序列图像特征配准的摄像机补偿算法[J]. 光学 精密工程, 2008,16(7):1330-1334. WANG H F, LIU SH Q, WANG D B, et al. Video camera rotation compensation algorithm based on feature matching of sequences image frames[J]. Opt. Precision Eng., 2008,16(7):1330-1334. (in Chinese)[3] 丁雪梅, 王维雅, 黄向东. 基于差分和特征不变量的运动目标检测与跟踪[J]. 光学 精密工程, 2007, 15(4):570-576. DING X M, WANG W Y, HUANG X D. New method for detecting and tracking of moving target based on difference and invariant[J]. Opt. Precision Eng., 2007,15(4):570-576. (in Chinese)[4] DONGJOE S, TARDI T. Clique descriptor of affine invariant regions for robust wide baseline image matching[J]. Pattern Recognition, 2010,43:3261-3272.[5] LORIS N, ALESSANDRA L, SHERYL B. Local binary patterns variants as texture descriptors for medical image analysis[J]. Artificial Intelligence in Medicine, 2010, 49:117-125[6] 杨恒, 王庆. 一种新的局部不变特征检测和描述算法[J]. 计算机学报, 2010,33(5):935-944. YANG H, WANG Q. A novel local feature detection and description algorithm[J]. Chinese Journal of Computers, 2010,33(5):935-944.(in Chinese)[7] OJALA T, PIETIKAINEN M, MAENPAA T. Muhiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.[8] HUANG C R, CHEN C R, CHUNG P C. Contrast context histogramAn efficient discriminating local descriptor for object recognition and image matching [J].Pattern Recognition, 2008, 41(10):3071-3077.[9] 刘萍萍, 赵宏伟, 臧雪柏,等. 移动机器人定位图像匹配的快速局部特征算法[J]. 仪器仪表学报, 2009,30(8):1714-1719. LIU P P, ZHAO H W, ZANG X B, et al. Fast local feature algorithm applied to mobile robot localization image matching[J]. Chinese Journal of Scientific Instrument, 2009,30(8):1714-1719. (in Chinese)[10] 刘萍萍, 赵宏伟, 臧雪柏,等. 一种快速局部特征描述算法[J]. 自动化学报, 2010,36(1):40-45. LIU P P, ZHAO H W, ZANG X B, et al. A fast local feature description algorithm[J]. Acta Automatica Sinica, 2010,36(1):40-45. (in Chinese)[11] BAY H, TUYTELAARS T, GOOL L V. SURF:Speeded up robust features.Proceedings of the 9th European Conference on Computer Vision. Graz, Aust ria, 2006:404-417.[12] LOWE D G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.[13] KE Y, SUKTHANKAR R. PCA-sift:A more distinctive representation for local image descriptors.Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC,2004:506-513.[14] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630. [15] WU F C, WANG Z H, WANG X G. Feature vector field and feature matching[J]. Pattern Recognition, 2010,43:3273-3281. [16] 王旭光, 王志衡, 吴福朝. Harris相关与特征匹配[J]. 模式识别与人工智能, 2009, 22(4):505-513. WANG X.G, WANG Z.H, WU F.C. Harris correlation and feature matching[J]. PR &AI., 2009,22(4):505-513. (in Chinese)
0
浏览量
659
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构