浏览全部资源
扫码关注微信
1. 第二炮兵工程学院,陕西 西安,710025
2. .96411部队,陕西 宝鸡,721006
收稿日期:2011-05-04,
修回日期:2011-07-18,
网络出版日期:2011-12-25,
纸质出版日期:2011-12-25
移动端阅览
高晶, 孙继银, 刘婧, 吴昆. 基于区域模糊阈值的前视红外目标识别[J]. 光学精密工程, 2011,19(12): 3056-3063
GAO Jing, SUN Ji-yin, LIU Jing, WU Kun. FLIR target recognition based on local fuzzy threshold[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 3056-3063
高晶, 孙继银, 刘婧, 吴昆. 基于区域模糊阈值的前视红外目标识别[J]. 光学精密工程, 2011,19(12): 3056-3063 DOI: 10.3788/OPE.20111912.3056.
GAO Jing, SUN Ji-yin, LIU Jing, WU Kun. FLIR target recognition based on local fuzzy threshold[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 3056-3063 DOI: 10.3788/OPE.20111912.3056.
针对用前视红外(FLIR)目标法识别复杂地面时
存在无直接可用基准图、背景干扰严重、目标与背景灰度差异小等问题
提出了一种基于区域模糊阈值的目标识别方法。首先
在建立多尺度空间的基础上
设计多阈值算法
生成显著图;其次
引入基于图像模糊率的区域模糊阈值方法
改进Itti模型
构建候选目标筛选模型;最后
对检测结果运用积分归一化积相关(Nprod)算法进行精匹配
确定识别目标。实验结果表明
与Hausdorff距离算法相比
该识别算法匹配率提高了近20%
花费时间缩短了3/4;与积分Nprod算法相比
提出的算法匹配率提高了近40%
时间缩短了1/2。结果显示
对于复杂背景的前视红外目标
该方法具有匹配率高、速度快、精度高等优点。
A target recognition method based on local fuzzy thresholds is presented to solve the problems of serious background interference
the absence of reference map for complex terrain objects and the low contrast between the target and the background. Firstly
a multi-threshold algorithm is designed and a saliency map is produced based on the establishment of multi-scale space. Then
the Itti model is improved and a candidate target filtering model is constructed by using the local fuzzy threshold method based on an image fuzzy rate. Finally
the detected results are precisely matched using Integral Nprod to determine the right one. The experimental results indicate that the match rate of the algorithm has increased nearly by 20% and 40% and the time consumption by 75% and 50% as compared with those of Hausdorff distance algorithm and Integral Nprod algorithm
respectively.In conclusions
the new algorithm has the advantages of high match rate
high speed and high accuracy for FLIR targets in complicated backgrounds.
卓志敏,杨雷,杨莘元,等. 一种复杂环境下的红外成像运动目标检测方法[J]. 宇航学报,2008,29(1):339-343. ZHUO ZH M, YANG L, YANG X Y, et al. A method of infrared image moving object detection in a complex environment [J]. Journal of Astronautics, 2008, 29(1):339-343. (in Chinese)[2] 朱娟娟,郭宝龙. 复杂场景中基于变块差分的运动目标检测[J]. 光学 精密工程,2011,19(1):183-191. ZHU J J,GUO B L. Moving object detection based on variant block difference in complex scenes [J]. Opt. Precision Eng., 2011,19(1):183-191.(in Chinese)[3] BULTHOFF H H,LEE S W, POGGIO T,et al.Biologically Motivated Computer Vision [M]. New York:Springer Publishing Company,2003:150-159.[4] LTTI L, KOCH C. Computational modeling of visual attention [J]. Nature Reviews Neuroscience, 2001, 2(3):194-203.[5] SAID A, PEARLMAN W A. A new, fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3):243-250.[6] TSOTSOS J K, CULHANE S M, WAI W Y K, et al. Modeling visual via selective tuning[J]. Artificel Intelligence, 1995, 78(1/2):507-545.[7] 沈兰荪,卓力.小波编码与网络视频传输[M]. 北京:科学出版社,2005:9-11. SHEN L S,ZHUO L. Wavelet Coding and Network Video Transmission [M]. Beijing: Science Press, 2005:9-11. (in Chinese)[8] SIRMACEK B, UNSALAN C. Urban-area and building detection using SIFT keypoints and graph theory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1156-1167.[9] LAPTEV I. Improving object detection with boosted histograms[J]. Image and Vision Computing, 2009, 27(5):535-544.[10] HUTTENLOCHER D P, KLANDERMAN G A, RUCK L W J. Comparing images using the hausdorff distance [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1993,15(9):850-863.[11] LING H. Techniques in image retrieval: Deformation insensitivity and automatic thumbnail cropping. United States Maryland: University of Maryland, College Park, 2006.[12] 曾智勇,张学军,崔江涛,等. 基于显著兴趣点颜色及空间分布的图像检索新方法[J]. 光子学报,2006,35(2):308-311. ZENG ZH Y,ZHANG X J. A new image retrieval method based on a significant interest point color and spatial distribution in matching [J]. Journal Photon, 2006, 35(2):308-311. (in Chinese)[13] LINDEBERG T. Scale-space[M]. Wiley Encyclopedia of Computer Science and Engineering, 2008.[14] 纪华,吴元昊,孙宏海,等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程, 2009, 17(2):339-444. JI H,WU Y H,SUN H H, et al. SIFT feature matching algorithm with global information[J]. Opt. Precision Eng., 2009,17(2):339-444. (in Chinese)[15] 王梅,屠大维,周许超. SIFT特征匹配和差分相乘融合的运动目标检测[J]. 光学 精密工程,2011,19(4):892-899. WANG M, TU D W, ZHOU X CH, et al.Moving object detection by combining SIFT and differential multiplication[J]. Opt. Precision Eng., 2011,19(4):892-899. (in Chinese)[16] 朱永松,国澄明. 基于相关系数的相关匹配算法的研究[J]. 信号处理,2003,19(6):531-534. ZHU Y S, GUO CH M. Research of correl-ation matching algorithm based on correlation coeffic-ient[J]. Signal Process, 2003, 19(6):531-534. (in Chinese)[17] 郭文普,孙继银,李钊. 基于卫星图像的三维前视基准图制备方法[J]. 无线电工程,2007,37(12):9-11. GUO W P, SUN J Y, LI ZH. A preparation method of the former based on three-dimensional images of satellite [J]. Radio Engineering, 2007, 37(12):9-11. (in Chinese)
0
浏览量
547
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构