浏览全部资源
扫码关注微信
哈尔滨工程大学 自动化学院,黑龙江 哈尔滨,150001
收稿日期:2011-06-02,
修回日期:2011-08-18,
网络出版日期:2011-12-25,
纸质出版日期:2011-12-25
移动端阅览
杜航原, 郝燕玲, 赵玉新, 杨永鹏. 用概率假设密度滤波实现同步定位与地图创建[J]. 光学精密工程, 2011,19(12): 3064-3073
DU Hang-yuan, HAO Yan-ling, ZHAO Yu-xin, YANG Yong-peng. Implementation of SLAM by probability hypothesis density filter[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 3064-3073
杜航原, 郝燕玲, 赵玉新, 杨永鹏. 用概率假设密度滤波实现同步定位与地图创建[J]. 光学精密工程, 2011,19(12): 3064-3073 DOI: 10.3788/OPE.20111912.3064.
DU Hang-yuan, HAO Yan-ling, ZHAO Yu-xin, YANG Yong-peng. Implementation of SLAM by probability hypothesis density filter[J]. Editorial Office of Optics and Precision Engineering, 2011,19(12): 3064-3073 DOI: 10.3788/OPE.20111912.3064.
针对杂波环境中传统同步定位与地图创建(SLAM)算法无法有效表达传感器多种信息以及容易发生错误数据关联的问题
提出一种基于概率假设密度滤波的SLAM算法。该算法将每一时刻传感器的观测信息和环境地图表示为随机有限集
建立联合目标状态变量;通过概率假设密度(PHD)滤波对机器人位姿和环境地图状态进行同时估计
并利用粒子滤波实现PHD滤波。在进行目标状态提取时
为避免聚类算法引入的误差
对粒子集进行时滞输出。提出的SLAM算法能准确表达观测的不确定性、漏检以及杂波引起的虚警等多种传感器信息
且避免了数据关联过程
使系统状态估计更接近真实值。仿真实验结果表明:与传统SLAM算法相比
新算法的机器人定位及环境构图精度提高了50%以上
为杂波环境下SLAM问题的研究提供了新的途径。
Traditional Simultaneous Localization and Mapping(SLAM) algorithm is lack of the ability to describe multiple sensor information accurately in a clutter environment
and it is prone to false data association. Therefore
this paper proposes a SLAM algorithm based on Probability Hypothesis Density (PHD) filter to deal with these problems. By taking the sensor observation and environmental map as random finite sets in every time step
a joint target state variable is constructed. Then
with the Probability Hypothesis Density(PHD) filtering
the poses and environmental map of the robot are estimated simultaneously and the PHD filter is realized by a particle filter. To avoid the error caused by cluster
a time-delay particle set outputting approach is proposed for joint target state extracting. The new algorithm can describe the observation uncertainty
loss detecting
false alarm due to a clutter and other sensor information accurately
and also can avoid the data association
by which the system state estimation is closer to real values. The simulation results show that the accuracy of the new algorithm in the vehicle localization and mapping is improved by more than 50% as compared with that of traditional SLAM algorithm. It provides a new solution for SLAM problems in the clutter environment.
SMITH R, SELF M, CHESSEMAN P. Estimating uncertain spatial relationships in robotics. Proceedings of Conference on Uncertainty in Artificial Intelligence. Amsterdam: North Holland, 1988:435-461.[2] DISSANAYAKE G, NEWMAN P, CLARK S, et al. A solution to the simultaneous localization and map building(SLAM) problem[J]. IEEE Trans on Robotics and Automation, 2001,17(3):229-241.[3] THRUN S, KOLLER D, GHAHMARANI Z, et al. Simultaneous localization and mapping with sparse extended information filters: theory and initial results[J]. Springer Tracts in Advanced Robotics, 2004, 7:363-380.[4] PAZ L M, TARDOS J D, NEIRA J. Divide and conquer: EKF SLAM in O(n)[J]. IEEE Transactions on Robotics, 2008, 24(5):1107-1120.[5] MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem. Proc of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: AAAI Press, 2002:593-598.[6] MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. Proc of the 6th International Joint Conference on Artificial Intelligence. Acapulco, Mexico, 2003:1151-1156.[7] KIM C, SAKTHIVEL R, CHUNG W K. Unscented FastSLAM: A robust and efficient solution to the SLAM problem[J]. IEEE Transactions on Robotics, 2008,24(4):808-820.[8] KAESS M, RANGANATHAN A, DELLAERT F. iSAM: incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6):1365-1378.[9] HUANG SH D, WANG ZH, DISSANAYAKE G. Sparse local submap joining filter for building large-scale maps[J]. IEEE Transactions on Robotics, 2008,24(5):1121-1130.[10] NI K, DELLAERT F. Multi-level submap based SLAM using nested dissection. Proc of the International Conference on Intelligent Robots and Systems. Taipei: IEEE Press, 2010:2558-2565.[11] CADENA C, NEIRA J. SLAM in O(lgn) with the combined Kalman-information filter[J]. Robotics and Autonomous Systems, 2010,58(11):1207-1219.[12] DONG J F, WIJESOMA W S, SHACKLOCK A P. An efficient rao-blackwellized genetic algorithmic filter for SLAM. Proc of the 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE Press, 2007:2427-2432.[13] CHATTERJEE A, MATSUNO F. A neuro-fuzzy assisted extended kalman filter-based approach for simultaneous localization and mapping (SLAM) problems[J]. IEEE Transactions on Fuzzy Systems, 2007,15(5):984-997.[14] MAHLER R. Statistical Multisource Multitarget Information Fusion [M]. Boston: Artech House Publishers, 2007.[15] MA W K, VO B N. Tracking an unknown time varying number of speakers using TDOA measurements: a random finite set approach[J]. IEEE Transactions on Signal Processing, 2006,54(11):3291-3304.[16] VO B N, MA W K. The Gaussian mixture probabililty hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4091-4104.[17] YIN J J, ZHANG J Q, ZHUANG Z S. Gaussian-sum PHD filtering algorithms for nonlinear non-Gaussian models[J]. Chinese Journal of Aeronautics, 2008, 24(4): 341-351.[18] MAHLER R. Multitarget Bayes filtering via first-order multitarget moment[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003,39(4):1152-1178.[19] BO B T. Random finite set in multi-object filtering. Perth: University of Western Australia, 2008.[20] MURPHY K P. Bayesian map leaming in dynamic environments. Proc of Advances in Neural Information Processing System. Denver, USA: MIT Press, 2000,12: 1015-1021.[21] SCHOENBERG F. Transforming spatial point processes into Poisson processes[J].Stochastic Processes and Their Applications, 1999,81(2):155-164.[22] JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review[J]. ACM Computing Surveys, 1999,31(3):264-323.[23] PANTA K, VO B N, SINGH S, et al. Probability hypothesis density filter versus multiple hypothesis tracking. Proc of Signal Processing, Sensor Fusion, and Target Recognition XIII. Orlando, USA: SPIE, Bellingham, WA, 2004,284-295.[24] Australian Centre for Field Robotics. Souce Code. (2008-06-10). http://www-personal.acfr.usyd. edu.au/tbailey/.
0
浏览量
220
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构