浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春,130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2011-11-08,
修回日期:2011-12-15,
网络出版日期:2012-01-25,
纸质出版日期:2012-01-25
移动端阅览
刘小涵, 赵晶丽, 冯晓国, 申振峰, 高劲松, 张红胜. 高透光率感性网栅膜的电磁屏蔽[J]. 光学精密工程, 2012,20(1): 80-87
LIU Xiao-han, ZHAO Jing-li, FENG Xiao-guo, SHEN Zhen-feng, GAO Jin-song, ZHANG Hong-sheng. Electromagnetic shielding of highly transparent inductive mesh[J]. Editorial Office of Optics and Precision Engineering, 2012,20(1): 80-87
刘小涵, 赵晶丽, 冯晓国, 申振峰, 高劲松, 张红胜. 高透光率感性网栅膜的电磁屏蔽[J]. 光学精密工程, 2012,20(1): 80-87 DOI: 10.3788/OPE.20122001.0080.
LIU Xiao-han, ZHAO Jing-li, FENG Xiao-guo, SHEN Zhen-feng, GAO Jin-song, ZHANG Hong-sheng. Electromagnetic shielding of highly transparent inductive mesh[J]. Editorial Office of Optics and Precision Engineering, 2012,20(1): 80-87 DOI: 10.3788/OPE.20122001.0080.
在确保制作感性网栅膜后光学窗红外透射率下降小于5%的前提下
研究了影响感性网栅膜电磁屏蔽特性的主要因素。归纳了感性网栅膜红外透射率公式
运用含阻抗边界条件的谱域Galerkin法推导了周期结构金属网栅的电磁场积分方程
用周期矩量法计算出网栅的反射系数及透射系数
进而求出其电磁屏蔽效能;计算并分析了采用不同线宽、周期、衬底材料、衬底厚度时透明导电光窗(金属网栅膜)的电磁屏蔽效能。最后
采用激光直写、真空镀膜等工艺在ZnS基底上制作了周期为360 m360 m、线宽为12 m
方块电阻分别为13 、25 的样片
采用自由空间法测试了2~18 GHz频段的电磁屏蔽效能。测试与分析结果表明:当感性网栅膜在8~10 m波段引起的平均透射率下降小于2%的情况下
电磁屏蔽效能平均达到了20 dB以上。结果显示网栅的光电特性是矛盾的
线宽与周期越小电磁屏蔽效果越好
同时应尽量降低网栅的表面电阻。
This paper studies the influencing factors on the electromagnetic shielding of an inductive metallic mesh when the infrared transmission reduction of optical window caused by the mesh is less than 5%. The infrared transmission formulas of the inductive mesh are summarized
then
the electromagnetic field integral equation for the periodic structure of metallic mesh is built based on Galerkin's method in the spectral domain. The transmission and reflection coefficients are derived by the Moment of Method(MOM). After that
the electromagnetic shield effectiveness of the mesh is calculated and the effects of different line widths
periods
substrate materials
substrate thicknesses on the electromagnetic shielding of the transparent conductive optical window (with metallic mesh) are calculated and analyzed. Finally
metallic mesh samples with a line width of 12 m
a period of 360 m360 m and the surface resistance of 13
25 are fabricated on a ZnS substrate by the laser direct writing figure
vacuum coating
et al
.. The electromagnetic shield effectiveness from 2 GHz to 18 GHz is tested by a free space method. Results indicate that the average electromagnetic shield effectiveness is more than 20 dB when the infrared transmission reduction caused by the metallic mesh is less than 2% in 8-10 m. Experiments indicate that the optical and electrical performance of metallic mesh film is inconsistent .The main solution method is to select a thinner line width and smaller period and to reduce the surface resistance value of the mesh as low as possible at the same time.
SAULEAU R. Beam focusing using 60 GHz fabry-perot resonators with uniform and non-uniform metal grids[J]. Electronics Letters,2003,39(4) :341-342.[2] BAE J,CHIAO D B. Metal mesh couplers using evanescent waves at millimeter and sub millimeter wavelengths microwave symposium digest[J].IEEE,1995(2):597-600.[3] DICKIE R. Multilayer mesh filter for quasi-optical beamsplitting applications[J].IEEE,1995(2):597-600.[4] SCHUBERT M R. Diffraction limited cw optically pumped lasers[J].IEEE,1997,13(6):455-459.[5] DRUPP R P. Multiband planar metallo-dielectric photonic crystals using frequency selective surface techniques[J]. IEEE, 2004(2):1907-1910.[6] URICH R. Far-infrared properties of metallic mesh and its complementary structure[J]. Infrared Physics, 1967(7):37-57.[7] WHITBOURN L B, COMPTON R C. Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary[J]. Appl.Opt., 1985, 24(2): 217-220.[8] KLEIN R C.Microwave shielding effectiveness of EC-coated dielectric slabs[J].IEEE,1990,38(3):321-324.[9] KOHIN M, WEIN S J, TRAYLOR J D, et al.. Analysis and design of transparent conductive coatings and filters[J].Opt. Precision Eng., 1993, 32(5): 911-925.[10] 冯晓国,方梁,孙连春,等. 金属网栅结构参数设计与制作 [J]. 光学 精密工程,2005,13(1): 59-64. FENG X G, FANG L, SUN L CH, et al.. Characteristic dimension design and fabrication of metallic mesh[J]. Opt. Precision Eng., 2005, 13(1): 59-64. (in Chinese)[11] 刘永猛,谭久彬,刘俭,等. 高透光率金属网栅微波/红外二色波组合器 [J]. 光学 精密工程,2010,18(4):786-791. LIU Y M,TAN J B, LIU J, et al.. Microwave/infrared dichroic beam combiner using high transparent metallic mesh[J]. Opt. Precision Eng., 2010, 18(4): 786-791. (in Chinese)[12] 陆振刚,谭久彬,金鹏,等. 高通光率金属网栅屏蔽效率的等效折射率模型 [J].光学 精密工程,2006,14(6):949-954. LU ZH G, TAN J B, JIN P, et al.. Equivalent refractive index model on shielding effectiveness analysis of high transparency metallic mesh[J]. Opt. Precision Eng., 2006, 14(6): 949-954. (in Chinese)[13] MCPHEDRAN R C. Electromagnetic Theory of Gratings[M].Topics in Current Physics, 1980.[14] 赖祖武. 电磁干扰防护与电磁兼容 [M].北京:原子能出版社,1993. LAI Z W. Shielding Electromagnetic Interference and Electromagnetic Compatibility[M]. Beijing: Atomic energy Press, 1993. (in Chinese)[15] HAACKE G. New figure of merit for transparent conductors[J].Journal of Applied Physics, 1976, 47(9): 4086-4089.
0
浏览量
528
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构