浏览全部资源
扫码关注微信
西北工业大学 计算机学院 陕西省语音与图像信息处理重点实验室,陕西 西安,710129
收稿日期:2011-06-23,
修回日期:2011-08-17,
网络出版日期:2012-01-25,
纸质出版日期:2012-01-25
移动端阅览
姚睿, 张艳宁, 杨涛, 段锋. 基于迭代距离分类与轨迹关联检测空间弱小目标[J]. 光学精密工程, 2012,20(1): 179-189
YAO Rui, ZHANG Yan-ning, YANG Tao, DUAN Feng. Detection of small space target based on iterative distance classification and trajectory association[J]. Editorial Office of Optics and Precision Engineering, 2012,20(1): 179-189
姚睿, 张艳宁, 杨涛, 段锋. 基于迭代距离分类与轨迹关联检测空间弱小目标[J]. 光学精密工程, 2012,20(1): 179-189 DOI: 10.3788/OPE.20122001.0179.
YAO Rui, ZHANG Yan-ning, YANG Tao, DUAN Feng. Detection of small space target based on iterative distance classification and trajectory association[J]. Editorial Office of Optics and Precision Engineering, 2012,20(1): 179-189 DOI: 10.3788/OPE.20122001.0179.
为了实现高效自动目标检测
提出了一种可用于低信噪比条件下的空间可见光弱小目标检测算法。首先
建立空间光学图像模型
利用恒虚警率(CFAR)方法确定分割系数对单帧图像背景进行分割;然后
基于恒星结构稳定特性构建距离特征空间
并针对特征空间构造分类准则函数
使用迭代最优化分类方法提取出候选目标点;最后
依据目标运动轨迹的连续性建立空间目标轨迹关联、合并以及虚假目标轨迹删除规则
进行轨迹处理
实现空间可见光弱小目标的检测。文中还提出了单帧检测率、虚警率与序列检测率、虚警率相结合的评价方法。实验结果表明:在低信噪比条件下(SNR3)
得到的序列检测率达到96.02%以上
序列虚警率达到4.4%以下。该方法在低信噪比条件下显著提高了目标检测率
并有效抑制了虚警。
To realize automatic target detection
an algorithm is proposed to detect small visible optical space targets against low SNR conditions. Firstly
the single-frame image background is segmented
and the segmentation coefficient is determined by a Constant False Alarm Ratio (CFAR) method. Then
a feature space is formed based on structural stability of the star
and classification criterion function is constructed for the distance feature space. Furthermore
candidate targets are extracted by using the iterative optimization distance classification method. Finally
small visible optical space targets are detected by trajectory association based on the continuity of target motion. In addition
an evaluation method combined with single frame detection probability
single frame false alarm probability and sequence detection probability is proposed. Experimental results indicate that the detection probability of sequence is more than 96.02%
and the false alarm probability is less than 4.4% when the SNR3. It concludes that the method can promote the detection probability against low SNR conditions significantly
and can remove the false alarm effectively.
ZHANG T X, MENG L, ZUO Z R. Moving dim point target detection with three-dimensional wide-to-exact search directional filtering[J]. Pattern Recognition Letters, 2007, 28(2): 246-253.[2] ABRAHAM D A. Detection-threshold approximation for non-Gaussian backgrounds[J]. IEEE Journal of Oceanic Engineering, 2010, 35(2): 355-365.[3] RELJIN N, MCDANIEL S, POKRAJAC D. Small moving targets detection using outlier detection algorithms[J]. SPIE, 2010, 7698: 401-411.[4] 朱娟娟, 郭宝龙. 复杂场景中基于变块差分的运动目标检测 [J]. 光学 精密工程, 2011, 19(1): 183-191. ZHU J J, GUO B L. Moving object detection based on variant block difference in complex scenes[J]. Opt. Precision Eng., 2011, 19(1): 183-191. (in Chinese)[5] DAVEY S J, RUTTEN M G, CHEUNG B. A comparison of detection performance for several Track-before-detect algorithms . 11th International Conference on Information Fusion, 2008, 1-8.[6] 曹琦, 王德江, 张齐. 红外点目标检测中的能量累积 [J]. 光学 精密工程, 2010, 18(3): 741-747. CAO Q, WANG D J, ZHANG Q. Energy accumulation in infrared point target detection[J]. Opt. Precision Eng., 2010, 18(3): 741-747. (in Chinese)[7] PORIKLI F. Needle picking: a sampling based track-before-detection method for small targets[J]. SPIE, 2010, 7698: 301-312.[8] 罗寰, 王芳, 陈中起. 基于对称差分和光流估计的红外弱小目标检测 [J]. 光学学报, 2010,30(6): 1715-1720. LUO H, WANG F, CHEN ZH. Q.Infrared target detecting based on symmetrical displaced frame difference and optical flow estimation[J]. Acta Optica Sinica,2010,30(6):1715-1720.(in Chinese)[9] WANG Z L, QUAN W. An all-sky autonomous star map identification algorithm[J]. IEEE Transcation on Aerospace and Electronic Systems, 2006, 19(3): 10-14.[10] CLEMONS T M, CHANG K C. Bias correction using background stars for space-based IR tracking . The 12th International Conference on Information Fusion, 2009:2028-2035.[11] ANITORI L, SRINIVASAN R, RANGASWAM Y M. Envelope-law and geometric-mean STAP detection[J]. IEEE Transaction on Aerospace and Electronic Systems, 2010, 46(1): 184-192.[12] HANSEN H G, ELYASHAR C. Adaptive thres- hold adjustment and control[J]. SPIE, 1989,1096:44-54.[13] ZHU Y, HU W J, ZHOU J. A new starry images matching method in dim and small space target detection . The 5th International Conference on Image and Graphics, 2010:447-450.[14] GANDHI T, YANG M T, KASTURI R. Performance characterization of the dynamic programming obstacle detection algorithm[J]. IEEE Transaction on Image Processing, 2006, 15(5): 1202-1204.[15] GROSSI E, LOPS M. Sequential detection of markov targets with trajectory estimation[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4144-4154.[16] CHANG C I. Multiparameter receiver operating characteristic analysis for signal detection and classification[J]. IEEE Sensors Journal, 2010, 10(3): 423-442.[17] LIU H M, HE Z S, ZENG J K. An improved radar detection algorithm based on hough transform[J]. International Journal of Sensing and Imaging, 2008, 9(1): 1-7.
0
浏览量
489
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构