浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所 激光与物质相互作用国家重点实验室,吉林 长春,130033
2. 俄罗斯科学院 西伯利亚分院气候与生态系统监测研究所 托木斯克,俄罗斯,634055
3. 俄罗斯科学院 列别捷夫物理所 莫斯科,俄罗斯,119991
收稿日期:2011-03-20,
修回日期:2011-09-15,
网络出版日期:2012-02-25,
纸质出版日期:2012-02-25
移动端阅览
张来明, 谢冀江, 郭劲, 陈飞, 姜可, ANDREEV YU M, IONIN A A, KINYAEVSKIY I O, KLIMACHEV YU M, KOZLOV A YU, KOTKOV A A, LANSKII G V, SHAIDUKO A V. CO激光在非线性晶体ZnGeP<sub>2</sub>和 GaSe中的混频效应[J]. 光学精密工程, 2012,20(2): 277-286
ZHANG Lai-ming, XIE Ji-jiang, GUO Jin, CHEN Fei, JIANG Ke, ANDREEV YU M, IONIN A A, KINYAEVSKIY I O, KLIMACHEV YU M, KOZLOV A YU, KOTKOV A A, LANSKII G V, SHAIDUKO A V. CO laser frequency mixing in nonlinear crystals ZnGeP<sub>2</sub> and GaSe[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 277-286
张来明, 谢冀江, 郭劲, 陈飞, 姜可, ANDREEV YU M, IONIN A A, KINYAEVSKIY I O, KLIMACHEV YU M, KOZLOV A YU, KOTKOV A A, LANSKII G V, SHAIDUKO A V. CO激光在非线性晶体ZnGeP<sub>2</sub>和 GaSe中的混频效应[J]. 光学精密工程, 2012,20(2): 277-286 DOI: 10.3788/OPE.20122002.0277.
ZHANG Lai-ming, XIE Ji-jiang, GUO Jin, CHEN Fei, JIANG Ke, ANDREEV YU M, IONIN A A, KINYAEVSKIY I O, KLIMACHEV YU M, KOZLOV A YU, KOTKOV A A, LANSKII G V, SHAIDUKO A V. CO laser frequency mixing in nonlinear crystals ZnGeP<sub>2</sub> and GaSe[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 277-286 DOI: 10.3788/OPE.20122002.0277.
为了获得2.15~1 500 m的相干光源
研究了CO激光在高质量非线性晶体ZnGeP
2
和GaSe中的混频效应。为了提高转换效率
在激光锁模方式下对CO激光器的二次谐波、和频和差频的产生进行了研究。结果显示
利用GaSe晶体和ZnGeP
2
晶体
调
Q
多谱线CO激光辐射的谱线内倍频效率分别大于0.3%和1.1%。采用ZnGeP
2
晶体进行倍频时
可调谐锁膜CO激光器的转换效率为12.5%。 模拟结果显示
二次谐波与和频产生的输出光谱相同。相邻谱线下
和频和差频的产生过程中
基波和一次谐波可以分别在4.0~5.0 m和100~1 200 m (太赫兹范围)形成振荡。利用锁模CO激光器在ZnGeP
2
晶体中的混频效应
可以得到2.15~1 500 m的相干光源
同时转换效率可达到甚至高于12.5%。
The CO laser frequency mixing in high-quality ZnGeP
2
and GaSe crystals is studied to obtain the 2.15-1 500 m coherent sources. Secondary Harmonic Generation(SHG)
sum- and difference frequency generations are considered as a method for the CO laser frequency mixing and the mode-locking as an efficient way to improve the mixing efficiency.Results show that the internal SHG efficiency of
Q
-switched multiline CO laser radiation has exceeded by 0.3% for GaSe crystal and has reached by 1.1 % for ZnGeP
2
crystal. When the SHG is in ZnGeP
2
the internal efficiency of electron beam sustained discharge frequency-tunable mode-locking CO laser is up to 12.5 %. Simultaneous SHG and sum frequency generation show the same output spectrum. It is shown by modeling that the sum and difference frequency generations of neighboring lines of both fundamental and first overtone bands can allow one to get the oscillation
respectively
at 4.0-5.0 m and 100-1 200 m (THz). In conclusions
the frequency mixing of mode-locked CO laser emission lines in ZnGeP
2
crystals allows some one to design 2.15-1 500 m coherent sources with the power frequency conversion efficiency up to or over 12.5%.
IONIN A A. Gas lasers . Florida:CRC Press-Taylor and Francis Group, Boca Raton, 2007.[2] BASOV N G, IONIN A A, KOTKOV A A, et al.. Pulsed laser operating on the first vibrational overtone of the CO molecule in the 2.5~4.2 m range: I. Multifrequency lasing[J]. Quantum Electronics, 2000, 30(9):771-777.(in Russian)[3] BASOV N G, IONIN A A, KOTKOV A A, et al.. Pulsed laser operating on the first overtone of the CO molecule in the 2.5~4.2 m range: II. Frequency-selective lasing[J]. Quantum Electronics, 2000, 30(10):859-866.[4] BASOV N G, HAGER G D, IONIN A A, et al.. Efficient pulsed first-overtone CO laser operating within the spectral range of 2.5~4.2 m[J]. IEEE J. Quant. Electron, 2000, 36(7):810-823.[5] ANDREEV YU M, VOEVODIN V G,GRYBEN-YUKOV A I, et al.. Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2[J]. Sov. J. Quant. Electron, 1984, 14(8):1021-1022.[6] BOYD G D, GANDRUB W B, BUEHLER E. Phase-matched up conversion of 10.6 m radiation in ZnGeP2[J]. Appl. Phys.Lett, 1971, 18(10):446-448.[7] BOYD G D, BRIDGES T J, PATEL C K N, et al.. Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2[J]. J. Appl. Phys. Lett, 1972, 21(11):553-555.[8] ANDREEV Y M, BARANOV V Y, VOEVODIN V G, et al.. Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse[J]. Sov. J. Quant. Electron, 1987, 17(11):1435-1436.[9] ANDREEV YU M, VEDERNIKOVA T V, BETIN A A, et al.. Conversion of CO2 and CO laser radiations in a ZnGeP2 crystal to the 2.3-3.1 m spectral range[J]. Sov. J. Quant. Electron, 1985, 15(7):1014-1015.[10] ANDREEV Y M, BELYKH A D, VOEVODIN V G, et al.. Doubling of the emission frequency of CO lasers with an efficiency of 3%[J]. Sov. J. Quant. Electron, 1987, 17(4): 490-491.[11] ANDREEV YU M,VOEVODIN V G, GRIBENY-UKOV A I, et al.. Mixing of frequencies of CO2 and CO lasers in ZnGeP2 crystals[J]. Sov. J. Quant. Electron, 1987, 17(6):748-749.[12] ANDREEV Y M, BELYH A D, VOEVODIN V G, et al.. Frequency conversion of combined СО:СО2 laser emission[J]. IX All over the Russia Symp. on Laser and Acoust. Sounding of the Atmosph, Thesis book, Tomsk, Russia, 1987, 1:403.[13] ABDULAVE G B, KULEVSKII L A, PROKHOR-OV A M, et al.. GaSe, a new effective material for nonlinear optics[J].JETP Letters,1972, 16(3):90-92.[14] ANDREEV Y M, BOVDEY S N, GEIKO P P, et al.. Multi-frequency laser source of 2.6~3.2 m range[J]. Optica Atmosfery, 1988, 1(1):124.[15] VETOSHKIN S V, IONIN A A, KLIMACHEV YU M, et al.. Multiline laser probing of CO:He,CO:N2, and CO:O2 active media in a wide-aperture pulsed amplifier[J]. J. Russian Laser Research, 2006, 27(1):33-69.[16] IONIN A A, KLIMACHEV Y M, KOTKOV A A, et al.. Carbon monoxide laser emitting nanosecond pulses with 10 MHz repetition rate[J]. Optics Communications, 2009, 282(2):294 -299.[17] MCGEOCH W M. Efficient generation at 4.8 m by doubling of mode-locked CO2 laser radiation[J]. SPIE, 1993, 1871:62-72.[18] SHI W, DING Y J, SCHUNEMANN P G. Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers[J]. Optics Communications, 2004, 233(1-3):183 -189.[19] VODOPYANOV K L, KULEVSKII L A. New dispersion relationships for GaSe in the 0.65~18 m spectral region[J]. Optics Communications, 1995,118(3-4):375-378.
0
浏览量
271
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构