浏览全部资源
扫码关注微信
浙江大学 流体动力与机电系统国家重点实验室 现代制造工程研究所,浙江 杭州,310027
收稿日期:2011-09-13,
修回日期:2011-10-28,
网络出版日期:2012-02-25,
纸质出版日期:2012-02-25
移动端阅览
张雷, 邬义杰, 刘孝亮, 王彬. 用于异形孔精密加工的超磁致伸缩构件的线性化迟滞建模[J]. 光学精密工程, 2012,20(2): 287-295
ZHANG Lei, WU Yi-jie, LIU Xiao-liang, WANG Bin. Linearity hysteresis model of giant magnetostrictive components for non-cylindrical hole precision machining[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 287-295
张雷, 邬义杰, 刘孝亮, 王彬. 用于异形孔精密加工的超磁致伸缩构件的线性化迟滞建模[J]. 光学精密工程, 2012,20(2): 287-295 DOI: 10.3788/OPE.20122002.0287.
ZHANG Lei, WU Yi-jie, LIU Xiao-liang, WANG Bin. Linearity hysteresis model of giant magnetostrictive components for non-cylindrical hole precision machining[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 287-295 DOI: 10.3788/OPE.20122002.0287.
根据超磁致伸缩构件精密加工异形孔刀具轨迹的特点
采用纯延时环节串联线性化模型
建立其在高频驱动下驱动电流与输出微位移的迟滞非线性动态模型。通过一定频率下驱动电流与输出位移的相关辨识
获得系统纯延时环节的补偿参数
并建立了驱动电流与无相位差输出位移的线性化模型。当实时控制时
通过迟滞非线性模型的直接逆模型补偿
使位移输出与异形孔的理想刀具轨迹一致。实验验证表明
直接逆模型的最大开环控制误差为2.7 m
最大相对误差为10%。进一步对构件进行微位移反馈闭环控制
实验误差最大值为1.2 m
最大相对误差为7%
提高了系统的控制精度。
According to the tool path characters of non-cylindrical hole precision machining by giant magnetostrictive components
a dynamic hysteresis model of giant magnetostrictive components was established by a pure delay transfer function and the linearity model between high-frequency driving currents and micro-displacement responses. The pure delay compensation parameters of the system were obtained by the relevant identification of driven currents and output displacements with a certain frequency. Then
a mapping model of the driven currents and output displacements without delay was established. The output displacement met the ideal tool paths of non-cylindrical hole boring by direct inverse model and delay compensation in real-time control. The results in verification experiments indicate that the maximum control error is 2.7 m
and the maximum relative error is about 10%. By integration of micro-displacement feedback control
the accuracy of the component is im proved further
the maximum control error is 1.2 m
and the maximum relative error is about 7%.
孙宝元.现代执行器技术[M]. 长春: 吉林大学出版社, 2003: 144-180. SUN B Y. Modern Actuators[M].Changchun:Jilin University Press,2003:144-180.(in Chinese)[2] 赵章荣,邬义杰,顾新建,等. 用神经网络结构实现超磁致伸缩智能构件滑模控制[J]. 光学 精密工程, 2009, 17(4):778-786. ZHAO ZH R,WU Y J,GU X J, et al.. Implementation of sliding mode control of giant magnetostrictive smart component by neural network[J]. Opt. Precision Eng., 2009, 17(4): 778-786. (in Chinese)[3] MAYERGOYZ D . Dynamic preisach models of hysteresis[J].IEEE Trans on Magetics, 1988, 24(6):2927-2929.[4] 龚大成,唐志峰,吕福在,等. 非线性Preisach理论与超磁致伸缩执行器高阶迟滞建模[J]. 机械工程学报, 2009, 45(12):252-256. GONG D CH, TANG ZH F, LV F Z, et al.. Nonlinear preisach model and high order hystersis modeling for giant magnetostrictive actuator[J]. Journal of Mechanical Engineering, 2009, 45(12):252-256. (in Chinese)[5] TAN X, BARAS J S. Adaptive identification and control of hysteresis in smart materials [J]. IEEE Transactions on Automatic Control,2005, 50(6):827-828.[6] 李欣欣,王文,陈子辰. 超磁致伸缩致动器的广义预测-多模PID控制[J]. 光学 精密工程, 2010, 18(2):412-419. LI X X, WANG W, CHEN Z CH. Generalized predictive-multimode PID control for giant magnetostrictive actuators[J]. Opt. Precision Eng., 2010, 18(2):412-419. (in Chinese)[7] 王湘江,王兴松. 基于KP模型的GMA迟滞系统辨识与补偿[J]. 中国机械工程, 2008, 19(10):1167-1173. WANG X J,WANG X S. GMA hysteresis system identification and compensation based on KP model[J]. China Mechanical Engineering, 2008, 19(10):1167-1173. (in Chinese)[8] 曹淑瑛,郑加驹,王博文,等. 基于动态递归神经网络的超磁致伸缩驱动器精密位移控制[J]. 中国电机工程学报, 2006, 26(3): 106-111. CAO SH Y, ZHENG J J, WANG B W, et al.. Precision position control for giant magnetostrictive actuator based on dynamic recurrent neural network[J]. Proceedings of the CSEE, 2006,26(3):106-111. (in Chinese)[9] CAVALLO A,NATALE C,PIROZZI S,et al..Feedback control systems for micropositioning tasks with hysteresis compensation [J].IEEE Trans. Magn., 2004,40(2):876-879.[10] NEALIS J, SMITH R C. Model-Based robust control design for magnetostrictive transducers operating in hysteretic and nonlinear regimes [J]. IEEE Transactions on Control Systems Technology, 2007,15(1):22239.
0
浏览量
433
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构