浏览全部资源
扫码关注微信
北京航空航天大学 仪器科学与光电工程学院 北京,100191
收稿日期:2011-07-20,
修回日期:2011-09-15,
网络出版日期:2012-02-25,
纸质出版日期:2012-02-25
移动端阅览
徐向波, 房建成, 李海涛, 陈彦鹏. 控制力矩陀螺框架系统的谐振抑制与精度控制[J]. 光学精密工程, 2012,20(2): 305-312
XU Xiang-bo, FANG Jian-cheng, LI Hai-tao, CHEN Yan-peng. Resonance elimination and precision control of CMG gimbal system[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 305-312
徐向波, 房建成, 李海涛, 陈彦鹏. 控制力矩陀螺框架系统的谐振抑制与精度控制[J]. 光学精密工程, 2012,20(2): 305-312 DOI: 10.3788/OPE.20122002.0305.
XU Xiang-bo, FANG Jian-cheng, LI Hai-tao, CHEN Yan-peng. Resonance elimination and precision control of CMG gimbal system[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 305-312 DOI: 10.3788/OPE.20122002.0305.
控制力矩陀螺(CMG)框架系统的速率控制精度是影响其输出力矩精度的重要因素
系统中谐波减速器提高了框架系统的动态响应能力
但其产生的机械谐振大幅降低了系统的控制精度。为抑制框架系统的谐振并满足系统的控制精度
本文建立了框架系统的动力学模型
根据系统动态性能要求选取合适的阻尼系数来设计系统主导极点
使控制器产生的零点与机械谐振对应的极点重合形成偶极子
从而抑制系统的机械谐振。仿真和实验结果显示:提出的方法有效地抑制了控制力矩陀螺框架系统的谐振
0.175 rad/s恒速控制精度为0.002
0.175 sin(2
t
) rad/s正弦随动控制的幅值相对误差为3.28%
相位差为0.13 rad。结果很好地满足了控制力矩陀螺的高精度输出力矩需求。
The control precision of gimbal system for a Control Moment Gyro (CMG) is a main factor affecting the output torque accuracy of the CMG. Generally
a harmonic driver a harmonic driver is adopted to improve the dynamic response ability of the gimbal system
however
the induced mechanical resonance seriously reduces the control precision of the gimbal system. In order to eliminate the resonance and satisfy the control precision of the gimbal system
a kinetic model was set up. A proper damping ratio was chosen to design the dominating poles according to the demands of gimbal system for dynamic performance. The zeroes induced by a controller were calculated to be equal to the poles induced by mechanical resonance
so that the mechanical resonance was eliminated. Simulation and experiment results show that the proposed method eliminates the gimbal resonance of the CMG
and the control precision of 0.175 rad/s is 0.002.When the gimbal system tracks a 0.175 sin(2
t
) rad/s sine given velocity
the relative amplitude error is 3.28% and the phase error is 0.13 rad. The control performance satisfies the demands of CMG for high output torque precision very well.
房建成,徐向波,魏彤. 采用线性求角的旋变轴角解码及激磁系统[J]. 光学 精密工程,2009,17(4):794-800. FANG J CH, XU X B, WEI T. Resolver excitation and resolver-to-digital conversion system based on linear angle calculation [J]. Opt. Precision Eng., 2009,17(4):794-800. (in Chinese)[2] 李海涛,房建成. 自适应角速度估计器在磁悬浮控制力矩陀螺框架伺服系统中的应用[J]. 光学 精密工程,2008,16(1):97-102. LI H T, FANG J CH. Application of adaptive angle-rate estimator to gimbal of MSCMG [J]. Opt. Precision Eng., 2008,16(1):97-102. (in Chinese)[3] YU L H, FANG J C, WU C. Magnetically suspended control moment gyro gimbal servo-system using adaptive inverse control during disturbances [J]. IEE Electronics Letters, 2005,41(1):21-22.[4] IVAN G, MASAHIRO I, TAMOTSU N. Robustness comparison of control schemes with disturbance observer and with acceleration control loop . Proceedings of the IEEE International Conference, Bled, Slovenia: ISIE, 1999:1035-1040.[5] ZHU W H, BIJARNI T. On active acceleration control of vibration isolation systems . 43th IEEE Conference on Decision and Control, Atalantis, Paradise island, Bahanmas, 2004(4):1-11.[6] XU W L, HAN J D, TSO S K, et al.. Contact transition control via joint acceleration feedback [J]. IEEE Transactions on Electronics, 2004,47(1):150-158.[7] LIU Y J, SUN L N, MENG Q X. Acceleration feedback control of a harmonic drive parallel robot . Conference on Robotics, Automation and Mechatronics, Singapore, 2004:390-395. [8] MOHD F M Y, WAHYUDI M, RINI A. Vibration control of two-mass rotary system using improved NCTF controller for positioning systems . IEEE Control and System Graduate Research Colloquium, 2010:61-67.[9] KRZYSZTOF S, TERESA O K. Damping of the torsional vibration in two-mass drive system using forced dynamic control . The International Conference on "Computer as a Tool", Warsaw, 2007:1712-1717.[10] ZHANG G G, JUNJI F, MASAMICHI S. Vibration suppression control of robot arms using a homogeneous type electrorheological fluid [J].IEEE/ASME Transactions on Mechatronics,2000,5(3):302-309. [11] GHAZANFAR S, PEGAH S, MANSOOR Z, et al.. State space analysis and control design of two-mass resonant system . Second International Conference on Computer and Electrical Engineering, Warsaw, 2007:1712-1717.
0
浏览量
363
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构