浏览全部资源
扫码关注微信
1. 国防科技大学 机电工程与自动化学院,湖南 长沙,410072
2. 解放军理工大学 工程兵工程学院,江苏 南京,210007
收稿日期:2011-08-29,
修回日期:2011-10-27,
网络出版日期:2012-02-25,
纸质出版日期:2012-02-25
移动端阅览
谢立强, 邢建春, 王浩旭, 董培涛, 吴学忠. 各向异性湿法刻蚀 z切石英后结构侧壁形貌的预测[J]. 光学精密工程, 2012,20(2): 352-359
XIE Li-qiang, XING Jian-chun, WANG Hao-xu, DONG Pei-tao, WU Xue-zhong. Forecast of structure sidewall profiles for <em>z</em>-cut quartz after anisotropic wet etching[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 352-359
谢立强, 邢建春, 王浩旭, 董培涛, 吴学忠. 各向异性湿法刻蚀 z切石英后结构侧壁形貌的预测[J]. 光学精密工程, 2012,20(2): 352-359 DOI: 10.3788/OPE.20122002.0352.
XIE Li-qiang, XING Jian-chun, WANG Hao-xu, DONG Pei-tao, WU Xue-zhong. Forecast of structure sidewall profiles for <em>z</em>-cut quartz after anisotropic wet etching[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 352-359 DOI: 10.3788/OPE.20122002.0352.
基于石英晶体各晶面的湿法刻蚀速率
研究了石英微结构侧壁形貌的预测方法
讨论了各向异性湿法刻蚀石英的规律。首先
总结了石英各主要晶面的相对刻蚀速率
分别绘制了
x、y
族刻蚀速率矢量图。然后
在掩模层的边缘处
通过绘制相应的晶面刻蚀速率矢量图
得到各速率矢量的晶面线
晶面线所围成的最小轮廓即是石英微结构的刻蚀形貌。最后
利用该方法预测了
x
向和
y
向石英梁的侧壁形貌。在70 ℃的氢氟酸和氟化铵混合溶液内刻蚀5 h
制作了厚度均为500 m的
x
向和
y
向两种石英微梁。结果显示
y
向梁的-x向侧壁有一均匀整齐的晶棱
棱高210 m
而+
x
向侧壁平滑。
x
向梁的侧壁均有晶棱
+
y
向晶棱较大
棱高为450 m
-y
向晶棱棱高为240 m。所制作梁的侧壁形貌与预测结论基本吻合
验证了预测方法的正确性。基于该方法可在石英微结构的设计阶段
通过引入工艺因素对微结构进行优化。
In order to characterize the anisotropic wet etching rule of quartz crystals
a method to forecast the sidewall profiles of quartz microstructures was studied based on wet etching rates of quartz crystal planes. First
etching rates of quartz crystal planes were summarized and the etching rate vector graphs of crystal planes were plotted for
x
and
y
groups. Then
the plane lines denoting their crystal planes were obtained by plotting etching rate vector graphs at each edge of a mask
and the etching shape was the minimum profile enclosed by plane lines. Finally
sidewall profiles of quartz beams at
x
and
y
directions were forecasted according to this method. An
x
direction quartz micro-beam and a
y
direction quartz micro-beam with a thickness of 500 m were fabricated after 5 h wet etching process in a mixture of hydrofluoric acid and ammonium fluoride at 70 ℃. Experimental results indicate that -
x
sidewall of the
y
direction micro-beam presents a crystal facet with a height of 210 m and +
x
sidewall is smooth; and crystal facets with the height of 450 m and 240 m appear on
y
sidewalls of
x
direction micro-beam respectively. These sidewall profiles of the beams are in agreement with the analysis results
which validates the forecasting method of wet etching profile. Results demonstrate that the quartz micromachined structure can be optimized by introducing fabrication processes based on the proposed method in designed steps.
徐军,尤波,李欣,等. 应用石英音叉谐振器的智能温度传感器[J]. 光学 精密工程,2009,17(6):1454-1459. XU J, YOU B, LI X, et al.. Fully digital smart temperature sensor with quartz tuning fork resonator [J]. Opt. Precision Eng., 2009, 17(6):1454-1459.(in Chinese)[2] 曾毅波,王凌云,谷丹丹,等. 超声技术在硅湿法腐蚀中的应用[J]. 光学 精密工程,2009,17(1):166-171. ZENG Y B, WANG L Y, GU D D, et al.. Application of ultrasonic technology to wet etching of silicon [J]. Opt. Precision Eng., 2009, 17(1):166-171.(in Chinese)[3] 幸研,朱鹏,倪中华,等. 多次掩模湿法腐蚀硅微加工过程的蒙特卡罗仿真[J]. 机械工程学报,2009,45(1):239-243. XING Y, ZHU P, NI ZH H, et al.. Monte Carlo simulation of multiple masking processes for anisotropic wet etching [J]. Journal of Mechanical Engineering, 2009,45(1):239-243. (in Chinese)[4] http://www.coventor.com .[5] CHENG D, SATO K, SHIKIDA M, et al.. Characterization of orientation-dependent etching properties of quartz: application to 3-D micromachining simulation system [J]. Sensors and Materials, 2005, 17(4):179-186.[6] CHENG D, SATO K, SHIKIDA M, et al.. Development of quartz etching database and 3-D micromaching simulation system . Proceedings of International Symposium on Micromechatronics and Human Science, Nagoya, Japan: ISMHS, 2003:281-285.[7] HAYASHI H, UEDA T. Simulation of anisotropic etching of alpha-quartz for 3D computer-aided-design system [J]. Sensors and Materials, 2005, 17(4):167-177.[8] RANGSTEN P, HEDLUND C, KATARDJIEV I V, et al.. Etch rates of crystallographic planes in z-cut quartzexperiments and simulation [J]. Journal of Micromechanical and Microengineering, 1998, 8(1):1-6.[9] HEDLUND C, LINDBERG U, BUCHT U, et al.. Anisotropic etching of z-cut quartz [J]. Journal of Micromechanical and Microengineering, 1993,3(2):68-73.[10] ERNSBERGER F M. Structural effects in the chemical reactivity of silica and silicates [J]. Journal of Physics and Chemic Solids, 1960, 13(3-4):347-351.[11] LIANG J X, KOHSAKA F, MATSUO T, et al.. Deep wet etching of z cut quartz wafer for MEMS applications . Proceedings of the 23rd Sensor Symposium on Sensors, Micromachines, and Applied Systems, Takamatsu, Japan: SSSMAS, 2006:31-36.[12] LIANG J X. Development of quartz MEMS microfabrication technologies and their application to capacitive tilt sensors . Tokyo: Waseda University, 2008.
0
浏览量
461
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构