浏览全部资源
扫码关注微信
重庆大学 光电技术及系统教育部重点实验室,重庆 400030
收稿日期:2011-04-06,
修回日期:2011-05-06,
网络出版日期:2012-02-25,
纸质出版日期:2012-02-25
移动端阅览
罗钧, 王强, 付丽. 改进蜂群算法在平面度误差评定中的应用[J]. 光学精密工程, 2012,20(2): 422-430
LUO Jun, WANG Qiang, FU Li. Application of modified artificial bee colony algorithm to flatness error evaluation[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 422-430
罗钧, 王强, 付丽. 改进蜂群算法在平面度误差评定中的应用[J]. 光学精密工程, 2012,20(2): 422-430 DOI: 10.3788/OPE.20122002.0422.
LUO Jun, WANG Qiang, FU Li. Application of modified artificial bee colony algorithm to flatness error evaluation[J]. Editorial Office of Optics and Precision Engineering, 2012,20(2): 422-430 DOI: 10.3788/OPE.20122002.0422.
为了准确快速评定平面度误差
提出将改进人工蜂群(MABC)算法用于平面度误差最小区域的评定。介绍了评定平面度误差的最小包容区域法及判别准则
并给出符合最小区域条件的平面度误差评定数学模型。叙述了MABC算法
该算法在基本人工蜂群算法(ABC)模型的基础上引入两个牵引蜂和禁忌搜索策略。阐述了算法的实现步骤
通过分析选用两个经典测试函数验证了MABC算法的有效性。最后
应用MABC算法对平面度误差进行评定
其计算结果符合最小条件。对一组测量数据的评定显示
MABC算法经过0.436 s可找到最优平面
比ABC算法节省0.411 s
其计算结果比最小二乘法和遗传算法的评定结果分别小18.03 m和6.13 m。对由三坐标机测得的5组实例同样显示
MABC算法的计算精度比遗传算法和粒子群算法更有优势
最大相差0.9 m。实验结果表明
MABC算法在优化效率、求解质量和稳定性上优于ABC算法
计算精度优于最小二乘法、遗传算法和粒子群算法
适用于形位误差测量仪器及三坐标测量机。
To realize fast and accurate evaluation for flatness errors
a Modified Artificial Bee Colony (MABC) algorithm was proposed to implement the minimum zone evaluation of flatness errors. The minimum zone method and the criteria for flatness errors were introduced.According to the minimum zone condition
the mathematic model of flatness error evaluation was presented. By introducing two traction bees and a Tabu Strategy(TS)
this modified method could enhance the rate of convergence and the quality of optimum solution.The implementation steps of the method were expounded. Then
two test functions were selected in the simulation experiments through analysis
and the results verified the feasibility of MABC algorithm. Finally
proposed approach was used to evaluate flatness errors.The results calculated meet the criterion of minimal condition. On the basis of a group of metrical data
this approach can find the optimal plane by 0.436 second
which saves 0.411 second as compared with that of ABC algorithm.In addition
the flatness value from the MABC algorithm is 18.03 m lower than that of the Least-Square Method(LSM)
and 6.13 m than the Genetic Algorithm(GA). According to other five measurement data sets available from the Coordinate Measuring Machines(CMMs)
the results obtained by the MABC algorithm are more accurate than those by the GA and Particle Swarm Optimization (PSO)
and the maximum gap of flatness values is 0.9 m. Experimental results show that the MABC-based approach outperforms ABC-base method in optimization efficiency
solution quality and stability
and its calculating precision is superior to that given by LSM
GA or PSO. It is suited for the evaluation of position measuring instruments and CMMs.
汪恺. 形状和位置公差标准应用指南[M]. 北京: 中国标准出版社, 1999:341-359. WANG K. Application Guide of Form and Position Tolerance Standard [M]. Beijing: China Standard Press,1999:341-359. (in Chinese)[2] CUI CH C, LI B, HUANG F G, et al.. Genetic algorithm based from error evaluation[J]. Measurement Science and Technology, 2007,18(7):1818-1822.[3] 廖平. 基于遗传算法的椭球面形状误差精确计算[J]. 仪器仪表学报, 2009, 30(4):780-785. LIAO P. Calculation of elliptic sphere form error based on genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2009, 30(4):780-785. (in Chinese)[4] ZHANG K. Spatial straightness error evaluation with an ant colony algorithm . Proceedings of the IEEE International Conference on Granular Computing (GRC 08), IEEE Press,2008:793-796.[5] 崔长彩, 黄富贵, 张认成, 等. 粒子群优化算法及其在圆柱度误差评定中的应用[J]. 光学 精密工程,2006,14(2):256-260. CUI CH C, HUANG F G, ZHANG R CH, et al.. Research on cylindricity evaluation based on the Particle Swarm Optimization(PSO)[J]. Opt. Precision Eng., 2006,14(2):256-260. (in Chinese)[6] WEN X L, HUANG J C, SHENG D H, et al.. Conicity and cylindricity error evaluation using particle swarm optimization[J]. Precision Engineering, 2010,34:338-344.[7] 张玉梅, 左春柽, 刘岩, 等. 基于人工免疫算法的轴线直线度误差评定[J]. 计量学报, 2010, 31(6):490-493. ZHANG Y M, ZUO CH CH, LIU Y,et al.. Evaluation method for axis straightness error based on artificial immune optimization algorithm[J]. Acta Metrologica Sinica, 2010,31(6):490-493. (in Chinese)[8] 罗钧, 卢嘉江, 陈伟民, 等. 具有禁忌策略的蜂群算法评定圆柱度误差[J]. 重庆大学学报, 2009, 32(12):1482-1485. LUO J, LU J J, CHEN W M, et al.. Cylindricity error evaluation using artifical bee colony algorithm with tabu strategy[J]. Journal of Chongqing University, 2009,32(12):1482-1485. (in Chinese)[9] KARABOGA D, An idea based on honey bee swarm for numerical optimization . Technical Report TR06, ErciyesUniversity, 2005.[10] KARABOGA D,BASTURK B.On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1):687-697.[11] KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1):108-132.[12] HUANG S T, FAN K C, WU J H. A new minimum zone method for evaluating flatness errors[J]. Precision Engineering, 1993, 15(1):25-32.[13] 刘平. 平面度误差目标函数凸凹性的研究[J]. 宇航计测技术,2002,22(6):14-17. LIU P. Study on the convex and concave character of flatness error objective function[J]. Journal of Astronautic Metrology and Measurement, 2002,22(6):14-17. (in Chinese)[14] SAMUEL G L,SHUNMUGAM M S. Evaluation of straightness and flatness error using computational geometric techniques[J]. Computer-Aided Design, 1999, 31(3):829-843.[15] 温秀兰, 赵茜. 基于进化策略的平面度误差评定[J]. 仪器仪表学报, 2007, 28(5):833-836. WEN X L, ZHAO Q.Flatness error evaluation based on evolutionary strategy[J]. Chinese Journal of Scientific Instrument, 2007, 28(5):833-836. (in Chinese)[16] WEBER T, MOTAVALL I S, FALLAHI B, et al.. A unified approach to form error evaluation[J]. Precision Engineering,2002,26(3):269-278.[17] CUI CH C, LI B, HUANG F G, et al.. Genetic algorithm based from error evaluation[J]. Measurement Science and Technology, 2007, 18(7):1818-1822.[18] 崔长彩, 张耕培, 傅师伟, 等. 利用粒子群优化算法的平面度误差评定[J]. 华侨大学学报(自然科学版), 2008, 29(4):507-509. CUI CH C, ZHANG G P, FU SH W, et al.. Particle swarm optimization-based flatness evaluation[J]. Journal of Huaqiao University(Natural Science), 2008, 29(4):507-509. (in Chinese)
0
浏览量
339
下载量
28
CSCD
关联资源
相关文章
相关作者
相关机构