浏览全部资源
扫码关注微信
上海交通大学 电子信息与电气工程学院 仪器科学与技术系, 上海 200240
收稿日期:2011-09-30,
修回日期:2011-11-24,
网络出版日期:2012-03-22,
纸质出版日期:2012-03-22
移动端阅览
高鹏, 颜国正, 王志武, 姜萍萍, 刘华. 肠道微机器人柔性运动系统[J]. 光学精密工程, 2012,(3): 541-549
GAO Peng, YAN Guo-zheng, WANG Zhi-wu, JIANG Ping-ping, LIU Hua. Flexible locomotion system for gastrointestinal microrobots[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 541-549
高鹏, 颜国正, 王志武, 姜萍萍, 刘华. 肠道微机器人柔性运动系统[J]. 光学精密工程, 2012,(3): 541-549 DOI: 10.3788/OPE.20122003.0541.
GAO Peng, YAN Guo-zheng, WANG Zhi-wu, JIANG Ping-ping, LIU Hua. Flexible locomotion system for gastrointestinal microrobots[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 541-549 DOI: 10.3788/OPE.20122003.0541.
提出一种适用于肠道微机器人的柔性运动系统来提高肠道机器人微创诊断的主动运动能力。柔性运动系统采用尺蠖型运动方式
由柔性运动机构和柔性驱动机构组成。柔性运动机构包括径向气囊软足和轴向伸缩推杆
并用万向节连接微机器人前后腔体从而提高运动柔性;柔性驱动机构利用尼龙线绳牵引波纹管泵驱动气囊软足和伸缩推杆激励微机器人伸缩。微机器人样机直径为12.2 mm
长度为78 mm
质量为14.8 g
最大径向钳位外径为20.2 mm
最大轴向行程为16.4 mm。实验结果表明
柔性驱动机构可以为波纹管泵和伸缩推杆分别提供最大为0.67 N和0.65 N的驱动力;微机器人样机能够在不同倾斜角度的刚性有机玻璃管中运动
在水平和竖直管道中的平均运行速度为0.38 mm/s和0.25 mm/s;能通过最小曲率半径为49.3 mm的塑料软管
在离体肠道中也能实现有效运动。本柔性运动系统为肠道微机器人提供了一种安全有效的自主运动方案。
A flexible locomotion system is proposed to improve the active locomotion ability of gastrointestinal microrobots in the minimally invasive diagnosis. The locomotion system simulating inchworm-like locomotion comprises a flexible locomotion mechanism and a drive mechanism. The flexible locomotion mechanism is mainly composed of radial balloon feet and an axial telescopic pushrod. In addition
a developed universal joint is used to join two cavities of the microrobot to improve its locomotion flexibility. The drive mechanism uses the nylon wires to actuate the bellows bump for the balloon feet and stimulate the telescopic pushrod for the microrobot to realize the flexible drive. The developed microrobot prototype shows its diameter in 12.2 mm
length in 78 mm and the weight in 14.8 g
and realizes the maximum clamping diameter of 20.2 mm and the maximum axial stroke of 16 mm. The experiments show that the wire drive mechanism can provide the maximum force of 0.67 N for the bellows bump and 0.65 N for the axial pushrod
respectively. The microrobot prototype can move in the rigid plexiglass tube with different angles
and the average speeds in the horizontal and vertical tubes are 0.38 mm/s and 0.25 mm/s
respectively. In addition
it can move in the curving plastic tube with a minimum curvature radius of 49.3 mm and present an effective locomotion in vitro intestinal tract. It can be seen that the flexible locomotion system provides an effective and safe locomotion case for gastrontestinal microrobots.
IDDAN G, MERON G, GLUKHOVSKY A, et al.. Wireless capsule endoscopy [J]. Nature, 2000, 405(5):417-418.[2] SWAIN P. Wireless capsule endoscopy [J]. Gut, 2003, 52: 48-50.[3] TOENNIES J L, TORTORA G, SIMI M, et al.. Swallowable medical devices for diagnosis and surgery: the state of the art[J]. Proc Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Sci., 2010, 224(7): 1397-1414.[4] 郭旭东, 严荣国, 颜国正,等. 胶囊内窥镜无线遥测定位的校正 [J]. 光学 精密工程,2010,18(12): 2650-2655. GUO X D, YAN R G, YAN G ZH. Calibration method for wirelessly localizing capsule endoscopy [J]. Opt. Precision Eng., 2010, 18(12): 2650-2655. (in Chinese)[5] 潘国兵,颜国正,张明卿,等. 概率神经网络与差异演化在胶囊内窥图像出血识别中的应用 [J]. 光学 精密工程,2010,18(6): 1429-1435. PAN G B, YAN G ZH, ZHANG M Q, et al.. Application of probabilistic neural network and differential evolution to bleeding detection in wireless capsule endoscopy images[J]. Opt. Precision Eng., 2010, 18(6): 1429-1435. (in Chinese)[6] 迟鹏程,张卫平,陈文元,等. 基于MEMS 技术的SU-8 仿昆虫微扑翼飞行器设计及制作 [J]. 光学 精密工程,2011,33(3): 366-370. CHI P C, ZHANG W P, CHEN W Y, et al.. Design and fabrication of an SU-8 biomimetic flapping-wing micro air vehicle by MEMS technology [J]. Opt. Precision Eng., 2011, 33(3): 366-370. (in Chinese)[7] WANG K D, YAN G ZH, MA G Y, et al.. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment [J]. Annals of Biomedical Engineering, 2008, 37(1): 210-221.[8] GAO P, YAN G ZH, WANG ZH W, et al.. A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon [J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(3): 256-267.[9] QUIRINI M, MENCIASSI A, SCAPELLATO S, et al.. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract [J]IEEE/ASME Trans. Mechatronics, 2008, 13(2): 169-179.[10] HARADA K, OETOMO D, SUSILO E, et al.. A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results [J]. Robotica, 2010, 28(2):171-183.[11] GAO M Y, HU CH ZH, CHEN ZH ZH, et al.. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope [J]. IEEE Trans. Biomedical Engineering, 2010, 57(12): 2891-2902.[12] ZHANG Y SH, JIANG SH Y, ZHANG X W, et al.. A variable diameter capsule robot based on multiple wedge effects [J]. IEEE/ASME Trans Mechatronics, 2011, 16(2): 241-254.[13] KIM H M, YANG S, KIN J, et al.. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment [J]. Gastrointestinal Endoscopy, 2010, 72(2): 381-387.[14] MENCIASSI A, DARIO P. Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003:2287-2298.[15] KIM B, LEE S, PARK J H, et al.. Inchworm-like microrobot for capsule endoscope IEEE International Conference on Robotics and Biomimetics, Shenyang, P.R. China, 2004: 458-463.
0
浏览量
477
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构