浏览全部资源
扫码关注微信
哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨 150001
收稿日期:2012-02-03,
修回日期:2012-02-08,
网络出版日期:2012-03-22,
纸质出版日期:2012-03-22
移动端阅览
张飞虎, 付鹏强, 汪圣飞, 张强. 超精密机床径推一体式空气静压轴承的静态特性[J]. 光学精密工程, 2012,(3): 607-615
ZHANG Fei-hu, FU Peng-qiang, WANG Sheng-fei, ZHANG Qiang. Static characteristics of radial-thrust aerostatic bearing on ultra-precision machine tool[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 607-615
张飞虎, 付鹏强, 汪圣飞, 张强. 超精密机床径推一体式空气静压轴承的静态特性[J]. 光学精密工程, 2012,(3): 607-615 DOI: 10.3788/OPE.20122003.0607.
ZHANG Fei-hu, FU Peng-qiang, WANG Sheng-fei, ZHANG Qiang. Static characteristics of radial-thrust aerostatic bearing on ultra-precision machine tool[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 607-615 DOI: 10.3788/OPE.20122003.0607.
提出了一种新的径推一体式静压主轴支撑方式来优化机床主轴系统性能
以满足超精密飞切机床对气体静压轴承高刚度的要求。采用计算流体力学和有限体积法对气体静压轴承气膜内部的流场与压力场进行仿真
并研究其静态特性。为提高计算精度
完成了轴承宏观尺寸与气膜厚度相差几个数量级时气膜厚度方向2 m间距的网格划分。仿真结果表明
在偏心状态下由于气膜压力的变化使节流孔气体流速在1 ~200 m/s内变化
机床所采用径推一体式轴承静态刚度达到3 508 N/m。研究表明
通过增大轴承的供气压强和减小节流孔的直径可改善轴承的静态性能进而提升机床性能。
A new vertical spindle supporting system was presented to improve the stiffness of an aerostatic bearing and to meet the requirements of machine tools for aerostatic bearings. The Computational Fluid Dynamics (CFD) and Finite Volume Method (FVM) were used for simulating the flow field and pressure field inside the aerostatic bearing and for researching its static characteristics. The grid subdivision in the direction of film thickness was implemented while establishing the grid of the gas film. Finally
a 2 m/grid on the thrust surfaces and 2.5 m/grid on the radial surfaces along the film thickness direction were achieved. Results indicate that the gas velocities around the orifices are about 200 m/s and 1 m/s when the pressure distribution of the gas film is changed and the loading capacity is achieved 3 508 N/m. It concludes that the static characteristics of the aerostatic bearing can be improved by increasing supply pressures or decreasing the diameters of orifices.
AN CH H, ZHANG Y, XU Q, et al.. Modeling of dynamic characteristic of the aerostatic bearing spindle in an ultra-precision fly cutting machine [J]. International Journal of Machine Tool & Manufacture, 2010, 50: 374-385.[2] YE SH L, LI D SH. Study on mechanical characteristics of aerostatic bearing with finite volume method [J]. Opt. Precision Eng., 2008, 16(5): 809-814. (in Chinese)[3] MIYATAKE M, YOSHIMOTO S. Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feed holes [J]. Tribology International, 2010, 43: 1353-1359.[4] ZHANG J H, ZHANG SH G, ZHAO H X, et al.. Structure design and test for guide unloading system of large ultraprecision machine [J]. Opt. Precision Eng., 2007, 15(9): 1382-1390. (in Chinese)[5] LEE W B, CHEUNG C F. A dynamic surface profile model for the prediction of nano surface generation in ultra-precision machining [J]. International Journal of Mechanical Sciences, 2001, 43: 961-991.[6] ZHAO Q L, GUO B, YANG H, et al.. Technological parameter optimization of micro-structured surfaces by diamond fly-cutting [J]. Opt. Precision Eng., 2009, 17(10): 2512-2519. (in Chinese)[7] FREW D A, SCHEFFER C. Numerical modelling of a high-speed rigid rotor in a single-aerostatic bearing using modified Euler equations of motion [J]. Mechanical Systems and Signal Processing, 2008, 22: 133-154.[8] LIU Q, ZHANG C P. H-type air bearing motion stage driven by linear motors [J]. Opt. Precision Eng., 2007, 15(10): 1540-1546. (in Chinese)[9] LI Y T, HAN D. Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance [J]. Tribology International, 2007, 40: 1120-1126.[10] KASSAB S Z, NOUELDEEN E M, SHAWKY M A. Effects of operating conditions and supply hole diameter on the performance of a rectangular aerostatic bearing [J]. Tribology International, 1997, 30: 533-545.[11] SCHENK C, BUSCHMANN S, RISSE S, et al.. Comparison between flat aerostatic gas-bearing pads with orifice and porous feedings at high-vacuum conditions [J]. Precision Engineering, 2008, 32: 319-328.[12] YAO Y X, QIN D L, ZHANG H B. Static performance analysis of orifice compensated externally pressurized gas spherical bearing based on FEM [J]. Key Engineering Materials, 2006, 315-316: 860-863.[13] CHEN X D, HE X M. The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography [J]. Tribology International, 2006, 39: 1336-1341.[14] LO CH Y, WANG CH CH, LEE Y H. Performance analysis of high-speed spindle aerostatic bearings [J]. Tribology International, 2005, 38: 5-14.[15] JI S M, MA B L, TAN D P. Numerical analysis of soft abrasive flow in structured restraint flow passage [J]. Opt. Precision Eng., 2011, 19(9): 2092-2099. (in Chinese)[16] LIU X J, CHEN R W. Finite element analysis and experiments on Rainbow shape piezoelectric energy transferring elements [J]. Opt. Precision Eng., 2011, 19(4): 789-796. (in Chinese)[17] KHATAIT J, LIN W, LIN W J. Design and development of orifice-type aerostatic thrust bearing [J]. SIMTech technical reports, 2005, 6(1): 7-12.[18] WANG Z, LI Z H. Design of optical-mechanical structure for lunar-based extreme ultraviolet camera [J]. Opt. Precision Eng., 2011, 19(10): 2427-2433. (in Chinese)
0
浏览量
161
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构