浏览全部资源
扫码关注微信
1. 清华大学精密仪器与机械学系, 北京 100084
2. 第二炮兵装备研究院 北京,100085
收稿日期:2011-08-25,
修回日期:2011-12-23,
网络出版日期:2012-03-22,
纸质出版日期:2012-03-22
移动端阅览
张明照, 牟建华, 刘扬, 彭晓军, 王伯雄. 应用复Morlet小波变换分析条纹图相位[J]. 光学精密工程, 2012,(3): 643-650
ZHANG Ming-zhao, MOU Jian-hua, LIU Yang, PENG Xiao-jun, WANG Bo-xiong. Phase extraction for fringe patterns based on complex Morlet wavelet transform[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 643-650
张明照, 牟建华, 刘扬, 彭晓军, 王伯雄. 应用复Morlet小波变换分析条纹图相位[J]. 光学精密工程, 2012,(3): 643-650 DOI: 10.3788/OPE.20122003.0643.
ZHANG Ming-zhao, MOU Jian-hua, LIU Yang, PENG Xiao-jun, WANG Bo-xiong. Phase extraction for fringe patterns based on complex Morlet wavelet transform[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 643-650 DOI: 10.3788/OPE.20122003.0643.
针对在使用干涉、Moir偏折等方法进行流场高速动态测量时条纹图中大量无效数据对计算结果的影响
提出了一种基于连续小波变换的条纹图相位分析方法。利用小波变换的瞬时条纹频率分析能力
选用复Morlet小波及合适的小波参数
使得条纹图的小波变换模极大值与其调制度系数成正比
将其作为加权最小二乘法相位展开算法的权值
保证了相位有效展开。使用曲线拟合进行小波变换脊定位
缩短了定位时间并消除了噪声干扰。仿真实验显示
使用该方法得到的分析结果与实际相位值的相对误差小于0.01%;内波流场测量实验显示
使用该方法进行条纹图分析
密度梯度测量精度达到了510
-6
g/cm
4
。结果表明
用该方法进行条纹图相位分析可以有效消除无效数据对结果的不利影响
相位展开有效可靠
分析结果精度高。
To reduce the effect of large number of invalid data in fringe patterns on calculation results in the measurement of high dynamic flows using interferometry or Moir? deflectometry
an effective phase extraction method was proposed based on the wavelet transform using complex Morlet wavelet. Through choosing proper parameters for the wavelet
the maximum modulus of the wavelet transform of a pattern was proportional to its modulation factor
then it was used as a weighting factor of a phase unwrapping algorithm based on weighted least squares to guarantee reliable phase unwrapping. In the process of wavelet ridge routing
a simple algorithm based on curve fitting was proposed to substantially reduce the routing time and the precision deterioration due to image noise. In simulation experiment
the relative error between calculated phase and actual phase is less than 0.01%. In internal wave measurement experiment
the method is used to analyze the fringe patterns
and the density gradient measurement precision has reached 5?10
-6
g/cm
4
. It shows that the method can reduce the effect of invalid data on analysis precision effectively and can obtain reliable unwrapped phases.
DALZIEL S B, HUGHES G O, SUTHERLAND B R. Whole-field density measurements by "synthetic schlieren"[J]. Exp. Fluids, 2000, 28:322-335.[2] 姜宏志,赵慧洁,李旭东,等. 用于强反射表面形貌测量的投影栅相位法 [J]. 光学 精密工程, 2010, 18(9):2002-2008. JIANG H Z, ZHAO H J, LI X D, et al.. Projected fringe profilometry for profile measurement of high reflective surface[J]. Opt. Precision Eng., 2010, 18(9):2002-2008. (in Chinese)[3] PFEIFER T, WANG B X, TUTSCH R. Phase-shifting moiré deflectometry[J]. Optik, 1995, 98:158-163.[4] 单鹂娜,于晓洋,于双,等. 彩色梯度相移与格雷码相结合的三维测量方法 [J]. 光学 精密工程, 2010, 18(11):2497-2504. SHAN L N, YU X Y, YU SH, et al.. Three dimensional measurement method combining color trapezoidal phase-shifting with color gray code[J]. Opt. Precision Eng., 2010, 18(11):2497-2504. (in Chinese)[5] PANDIT S M, CHAN D P. Comparison of Fourier-transform and data-dependent system profilometry by use of interferometric regeneration[J]. Appl. Opt., 1999, 38(19):4095-4102.[6] QIAN K. Windowed Fourier transform for fringe pattern analysis[J]. Appl. Opt., 2004, 43:2695-2702.[7] FORMARO G, FRANCESCHETTI G, LANARI R, et al.. Global and local phase-unwrapping techniques: a comparison[J]. J. Opt. Soc. Am. A, 1997, 14(10): 2702-2708.[8] BALDI A, BERTOLINO F, GINESU F. On the performance of some unwrapping algorithms[J]. Opt. Precision Eng., 2002, 37:313-330.[9] BONEE D J. Fourier fringe analysis: the two dimensional phase unwrapping problem[J]. Appl. Opt., 1991, 30(25): 3627-3632.[10] XU Y, AI C. Simple and effective phase unwrapping technique[J]. SPIE, 1993, 2003:254-263.[11] KAUFMANN G H, GALIZI G E. Evaluation of a preconditioned conjugated gradient algorithm for weighted least-squares unwrapping of digital speckles pattern interferometry phase maps[J]. Appl. Opt., 1998, 37(14):3076-3084.[12] WATKINS L R, TAN S M, BARNES T H. Determination of interferometer phase distributions by use of wavelets[J]. Opt. Lett., 1999, 24:905-907.[13] TOMASSINI P, GIULIETTI A, GIZZI L, et al.. Analyzing laser plasma interferograms with a continuous wavelet transform ridge extraction technique: the method[J]. Appl. Opt., 2001, 40(35):6561-6568.[14] LIU H, CARTWRIGHT A, BASARAN C. Moir interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms[J]. Appl. Opt., 2004, 43(4):850-857.[15] AFIFI M, FASSI-FIHRI A, MARJANE M, et al.. Paul wavelet-based algorithm for optical phase distribution evaluation[J]. Optics Communications, 2002, 211:47-51.[16] 孟涛, 张明照,王克军,等. 光栅纹影偏折法测量二维层化流体密度梯度 [J]. 光学 精密工程, 2008, 16(6):973-977. MENG T, ZHANG M ZH, WANG K J, et al.. Measurement of density gradient for 2D flow fields using grating Schlieren deflectometry[J]. Opt. Precision Eng., 2008, 16(6):973-977. (in Chinese)
0
浏览量
372
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构