浏览全部资源
扫码关注微信
国防科技大学 电子科学与工程学院,湖南 长沙,410073
收稿日期:2011-09-14,
修回日期:2011-10-31,
网络出版日期:2012-03-22,
纸质出版日期:2012-03-22
移动端阅览
汤毅, 辛勤, 李纲, 万建伟. 基于内容的高光谱图像无损压缩[J]. 光学精密工程, 2012,(3): 668-674
TANG Yi, XIN Qin, LI Gang, WAN Jian-wei. Lossless compression of hyperspectral images based on contents[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 668-674
汤毅, 辛勤, 李纲, 万建伟. 基于内容的高光谱图像无损压缩[J]. 光学精密工程, 2012,(3): 668-674 DOI: 10.3788/OPE.20122003.0668.
TANG Yi, XIN Qin, LI Gang, WAN Jian-wei. Lossless compression of hyperspectral images based on contents[J]. Editorial Office of Optics and Precision Engineering, 2012,(3): 668-674 DOI: 10.3788/OPE.20122003.0668.
提出了一种基于内容的高光谱图像无损压缩算法。采用自适应波段选择算法对高光谱图像进行降维
引入C-means算法对降维后的光谱矢量进行无监督分类。利用单调后向排序算法确定波段的预测顺序
并根据相邻波段的相关系数大小进行自适应波段分组。针对每一类地物
选取类内部分像素进行最优预测系数的训练
采用多波段线性预测的方案去除同类像素的谱间相关性
预测残差进行JPEG-LS无损压缩。对机载可见光/红外成像光谱仪(AVIRIS)与实用型模块化成像光谱仪(OMIS)获取的高光谱图像分别进行实验
并与未进行分类预测的算法比较。结果显示
提出的算法的平均压缩比分别提高约0.11和0.7
验证了该算法在无损压缩方面的有效性。
A lossless compression algorithm based on contents was proposed for hyperspectral images. An adaptive band selection algorithm was introduced to reduce the dimensionality of hyperspectral images
and a C-means algorithm was used to classify the spectral vectors resulting from dimensionality reduction unsupervisedly. Then
the reverse monotonic ordering method was taken to determine the prediction ordering
hyperspectral images were divided into groups adaptively according to the correlation between each adjacent bands
and the scheme of multi-band linear prediction was used to eliminate the spectral redundancy of the identical class. For each class
partial pixels within this class were selected to train optimal predictive coefficients
and predictive errors were compressed in lossless by JPEG-LS standard. Experiments were performed for the hyperspectral images acquired by an Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) and an Operational Modular Imaging Spectrometer(OMIS). Experiental results show that the average compression ratio of the proposed algorithm can be improved about 0.11 and 0.7 respectively as compared with above algorithms without classification prediction.
JENSEN J R. 遥感数字影像处理导论 [M]. 北京:机械工业出版社,2007. JENSEN J R. Introductory Digital image Processing:A Remote Sensing Perspective[M]. Beijing:China Machine Press, 2007. (in Chinese)[2] 孙蕾,谷德峰,罗建书,等. 最佳递归双向预测的高光谱图像无损压缩 [J]. 光学 精密工程,2009, 17(11):2864-2870. SUN L,GU D F,LUO J SH. Hyperspectral image lossless compression based on optimal recursive bidirectional prediction[J]. Opt. Precision Eng., 2009, 17(11): 2864-2870. (in Chinese)[3] WU X L, MEMON N D. Context-based, adaptive lossless image coding[J]. IEEE Transactions on Communications, 1997, 45(4): 437-444.[4] MEMON X, WU N D. Context based lossless intraband adaptive compression-cxtending calic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 9: 994-1001.[5] MAGLI E, OLMO G, QUACCHIO E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25.[6] MAGLI E. Multiband lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1168-1178.[7] ZHANG J, LIU G Z. An efficient reordering prediction-based lossless compression algorithm for hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 283-287.[8] MIELIKAINEN J, TOIVANEN P. Clustered DPCM for the lossless compression of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2943-2946.[9] ABRARDO A, BARNI M, MAGLI E, et al.. Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1892-1904.[10] 万建伟,粘永健,苏令华,等. 高光谱图像压缩技术研究进展 [J]. 信号处理,2010, 26(9):1397-1404. WAN J W,NIAN Y J,SU L H,et al.. Rearch progress on hyperspectral imagery compression technique[J]. Signal Processing, 2010, 26(9):1397-1404. (in Chinese)[11] 高恒振,万建伟,粘永健,等. 组合核函数支持向量机高光谱图像融合分类 [J]. 光学 精密工程,2011, 19(4):878-883. GAO H Z,WAN J W,NIAN Y J,et al.. Fusion classification of hyperspectral image by composite kernels support vector machine[J]. Opt. Precision Eng., 2011, 19(4):878-883. (in Chinese)[12] 张永生,巩丹超,刘军,等. 高分辨率遥感卫星应用-成像模型、处理算法及应用技术 [M]. 北京:科学出版社,2004. ZHANG Y S, GONG D C, LIU J, et al.. High-resolution Remote Sensing Satellite Data:Imaging Model,Processing Algorithms,and Application Technology[M]. Beijing: Science Press, 2004. (in Chinese)[13] 刘春红,赵春晖,张凌雁,等. 一种新的高光谱遥感图像降维方法 [J]. 中国图象图形学报,2005,10(2):218-222. LIU CH H,CHAO CH H,ZHANG L Y. A new method of hyperspectral remote sensing image dimensional reduction[J]. Journal of Image and Graphics, 2005, 10(2):218-222. (in Chinese)[14] HP Labs LOCO-I/JPEG-LS Home Page.. http://www.hpl.hp.com/loco.
0
浏览量
306
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构