浏览全部资源
扫码关注微信
1. 西安邮电学院 电子工程学院,陕西 西安,710100
2. 上海汉得信息技术股份有限公司 上海,201203
收稿日期:2011-11-12,
修回日期:2011-12-16,
网络出版日期:2012-04-22,
纸质出版日期:2012-04-22
移动端阅览
张霞, 闫社平. 悬臂梁式硅纳米谐振器的量子压缩效应[J]. 光学精密工程, 2012,(4): 760-765
ZHANG Xia, YAN She-ping. Quantum-squeezing effects of silicon cantilever nano-resonators[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 760-765
张霞, 闫社平. 悬臂梁式硅纳米谐振器的量子压缩效应[J]. 光学精密工程, 2012,(4): 760-765 DOI: 10.3788/OPE.20122004.0760.
ZHANG Xia, YAN She-ping. Quantum-squeezing effects of silicon cantilever nano-resonators[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 760-765 DOI: 10.3788/OPE.20122004.0760.
分析了厚度分别为12 nm和38.5 nm的悬臂梁式硅纳米谐振器内由海森堡不确定原理所决定的零点位置不确定度
分析结果表明
零点位置不确定度与悬臂梁的厚度和宽度成反比、与悬臂梁的长度成正比
12 nm厚的悬臂梁其零点位置不确定度为4.110
-3
nm。结合参量泵量子压缩技术
分析了不同厚度的悬臂梁式硅纳米谐振器的量子压缩系数与器件结构尺寸、温度、泵激电压之间的关系
结果显示
量子压缩系数与温度成正比、与泵激电压成反比。当温度为0.01 K、泵激电压为4 V时
12 nm厚的悬臂梁式硅纳米谐振器的量子噪声降低了26.56 dB。该项研究有助于提高极薄悬臂梁式硅纳米谐振器在量子噪声影响下的极限检测精度。
This paper analyzed the zero-point displacement uncertainty determined by Heisenberg uncertainty principle in the silicon cantilever nano-resonators with the thicknesses of 12 nm and 38.5 nm. The analysis results show that the zero-point displacement uncertainty is inversely proportional to the thickness and width of the cantilever and proportional to the length of the cantilever
and the zero-point displacement uncertainty of the silicon cantilever nano-resonator with the thickness of 12 nm is 4.1?10
-3
nm. Combining the parametric pumping quantum squeezing technique
the relationships between the quantum-squeezing factors of the silicon cantilever nano-resonators with different thicknesses and their structure dimensions
temperatures
pumping voltages were analyzed. The analysis results show that the quantum-squeezing factor is proportional to the temperature
and inversely proportional to the pumping voltage. When the temperature is 0.01 K and the pumping voltage equals 4 V
the quantum noise of the silicon cantilever nano-resonator with the thickness of 12 nm is reduced by 26.56 dB. The analysis results promote the improvement of the measurement accuracy of the ultra-thin cantilever nano-resonators under the influence of the quantum noises observably.
EKINCI K L, ROUKES M L. Nanoelectromechanical systems [J]. Review of Scientific Instruments, 2005, 76(6):061101-1-12.[2] BLENCOWE M P. Nanoelectromechanical systems [J]. Contemporary Physics, 2005, 46(4):249-264.[3] EKINCI K L. Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS) [J]. Small, 2005,1(8-9):786-797.[4] LI M, TANG H X, ROUKES M L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications [J]. Nature Nanotechnology, 2007, 2:114-120.[5] LI X X, ONO T, WANG Y L, et al.. Study on ultra-thin NEMS cantilevers-high yield fabrication and size-effect on Young's modulus of silicon. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. 2002:427-430.[6] HARLEY J A, KENNY T W. High-sensitivity piezoresistive cantilevers under 1 000 A thick [J]. Applied Physics Letters, 1999,75(2):289-291.[7] YANG J, ONO T, ESASHI M. Mechanical behavior of ultrathin microcantilever [J]. Sensors and Actuators A, 2000,82(1-3):102-107.[8] ALBRECH T R, GRUTTER P, HOME D, et al.. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity [J]. Journal of Applied Physics, 1991,69(2):668-673.[9] LI X X, ONO T, WANG Y L, et al.. Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young's modulus [J]. Applied Physics Letters, 2003,83(15):3081-3083.[10] LAHAYE M D, BUU O, CAMAROTA B, et al.. Approaching the quantum limit of a nanomechanical resonator [J]. Science, 2004,304:74-77.[11] BLENCOWE M. Nanomechanical quantum limits [J]. Science, 2004,304:56-57.[12] GAO M, LIU Y X, WANG X B. Coupling rydberg atoms to superconducting qubits via nanomechanical resonator [J]. Physical Review A, 2011, 83(2):022309.[13] 闫社平. 硅纳米线的机电特性研究. 杭州:浙江大学, 2011:65-66. YAN S P. Research of the electromechanical characteristics on silicon nanowire. Hangzhou: Zhejiang University, 2011:65-66. (in Chinese)[14] 曾谨言. 量子力学 [M]. 北京: 科学出版社, 2007:1-12. ZENG J Y. Quantum Mechanics [M]. Beijing: Science Press, 2007:1-12. (in Chinese)[15] 关洪. 量子力学基础 [M]. 北京: 高等教育出版社, 1999:81-91. GUAN H. The Basis of Quantum Mechanics [M]. Beijing: Higher Education Press, 1999:81-91. (in Chinese)[16] BAO M H. Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes [M]. Netherlands: Elsevier Science:33-137.[17] BLENCOWE M. Quantum electromechanical systems [J]. Physics Reports, 2004, 395(3):159-222.[18] CINQUEGRANA C, MAJORANA E, RAPAGNANI P, et al.. Back-action-evading transducing scheme for cryogenic gravitational-wave antennas [J]. Physical Review D, 1993,48(2):448-465. [19] BLENCOWE M P, WYBOURNE M N. Quantum squeezing of mechanical motion for micron-sized cantilevers [J]. Physica B, 2000,280(1-4):555-556.[20] GRISHCHUK L P, SAZHIN M V. Squeezed quantum states of a harmonic-oscillator in the problem of detecting gravitational-waves [J]. Zh Eksp Teor Fiz, 1983, 84:1937-1950.[21] XU Y, YAN S P, JIN Z H, et al.. Quantum squeezing effects of strained multilayer graphene NEMS [J]. Nanoscale Research Letters, 2011, 6(1):355.
0
浏览量
295
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构