浏览全部资源
扫码关注微信
北京工业大学 机械与应用电子技术学院 北京,100124
收稿日期:2011-12-06,
修回日期:2012-01-08,
网络出版日期:2012-04-22,
纸质出版日期:2012-04-22
移动端阅览
石照耀, 张宇, 张白. 三坐标机测量齿轮齿廓的不确定度评价[J]. 光学精密工程, 2012,(4): 766-771
SHI Zhao-yao, ZHANG Yu, ZHANG Bai. Uncertainty evaluation of CMM measurement for gear profile[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 766-771
石照耀, 张宇, 张白. 三坐标机测量齿轮齿廓的不确定度评价[J]. 光学精密工程, 2012,(4): 766-771 DOI: 10.3788/OPE.20122004.0766.
SHI Zhao-yao, ZHANG Yu, ZHANG Bai. Uncertainty evaluation of CMM measurement for gear profile[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 766-771 DOI: 10.3788/OPE.20122004.0766.
介绍了坐标测量中几种常用的不确定度评价方法。指出传统的三坐标测量机的测量不确定度评价方法大都不适用于评价坐标测量中面向对象的测量不确定度
并对使用蒙特卡洛方法评价测量不确定度进行了研究。首先
根据三坐标测量机详细标定文件及补偿策略说明建立测量模型。然后
将测量中的采样点通过测量模型生成大量测量结果
并以此评价测量不确定度。在齿廓评价实验中
评定齿廓误差的测量不确定度为0.96 m时
多次评价结果之间的最大差值不超过0.03 m
具有可靠的理论依据和较稳定的评定结果。文章指出
目前商用三坐标测量机大都不能为特定的测量对象提供测量不确定度报告
使用蒙特卡洛方法有希望改变此现状。
Several kinds of evaluation methods for the uncertainty in coordinate measurement are introduced and it points out that most of these methods are failed to the uncertainty evaluation for special objectives because of lack of theory support or practicability. Therefore
this paper investigates the uncertainty evaluation of gear measurement with Coordinate Measurement Machines (CMMs) by the Monte Carlo method. Firstly
a measuring model is established based on the files for the calibration and compensation of the specific CMM
then the mode is used to obtain measuring results with a large number of sample points. Using these simulated results
the uncertainties can be evaluated more conveniently. Finally
the Monte Carlo method is successfully used in evaluating measurement uncertainty of gear profiles and obtained stable results show that the maximal difference among the results is less than 0.03 m when the typical uncertainty is 0.96 m. The paper suggests that Monte Carlo method can support specific uncertainty measurement and can change the situation that common evaluation method can not be suitable for the commercial CMMs.
Guide to the expression of uncertainty in measurement (GUM)[S].ISO/IEC Guide 98-3:2008.[2] General requirements for the competence of testing and calibration laboratories[S].ISO/IEC 17025.2005[3] BALDWIN J M,SUMMERHAYS K D,CAMPBELL D A,et al.. Application of simulation software to coordinate measurement uncertainty evaluation[J]. Measure, 2004,2(4):40-52. [4] MICHAEL T, MATTHIAS F, HEINRICH S. The "Virtual CMM" a software tool for uncertainty evaluation-practical application in an accredited calibration lab. Meeting Uncertainty Anal.Meas. Des. State College, Pennsylvania, USA:ASPE,2004.[5] VAN D, HAN H, FRANK D,et al.. Virtual CMM using Monte Carlo methods based on frequency content of the error signal [J].SPIE, 2001,4401:158-167.[6] NARA M,ABBE M, TAKAMASU K. Uncertainty estimation using monte-carlo method constrained by correlations of the data[J]. Key Engineering Materials, 2008,381-382:587-590.[7] HIDEYUKI T, MAKOTO S, MAKOTO K. Evaluation of measurement uncertainty in gear measuring instruments by using the monte carlo simulation[J]. CIRP Annals, Manufacturing Technology, 2001,50(2):553-563.[8] 王书新,李景林,刘磊,等. 大尺寸焦平面空间相机调焦机构的精度分析[J]. 光学 精密工程, 2010,18(10):2239-2243. WANG SH X, LI J L, LIU L. Accuracy analysis of focusing mechanism in space camera with long-focal-plane[J]. Opt. Precision Eng., 2010,18(10):2239-2243. (in Chinese)[9] Propagation of distributions using a Monte Carlo method[S].ISO/IEC Guide 98-3.2008/Supplement 1.[10] Approach for uncertainty analysis and error evaluation of four-axis co-ordinate measuring machines[J]. Int J Adv Manuf Technol, 2009,41(11-12):1130-1139.[11] 王阔, 马勇. 超精密渐开线齿形的测量方法[J]. 光学 精密工程, 2006,14(6):980-985. WANG K, MA Y. Measuring methods of ultraprecision involute tooth profile[J]. Opt. Precision Eng., 2006,14(6):980-985. (in Chinese)[12] FRANCESCO A, GIULIO B, EMANUELE M B, et al.. Measurement uncertainty assessment of coordinate measuring machines by simulation and planned experimentation [J]. CIRP Journal of Manufacturing Science and Technology, 2011,4(1):51-56.[13] 张福民,曲兴华,叶声华. 面向对象的大尺寸测量不确定度分析[J]. 光学 精密工程, 2008,16(11):2239-2243. ZHANG F M,QU X H,YE SH H. Uncertainty estimation of large-scale measurement for special fitting task[J]. Opt. Precision Eng., 2008,16(11):2239-2243.(in Chinese)
0
浏览量
488
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构