浏览全部资源
扫码关注微信
安徽工程大学 机械与汽车工程学院 安徽省先进数控 及伺服技术重点实验室,安徽 芜湖,241000
收稿日期:2011-11-10,
修回日期:2011-12-15,
网络出版日期:2012-04-22,
纸质出版日期:2012-04-22
移动端阅览
王海, 夏小品, 周荣荻. 微小等离子体反应器的制作及性能测试[J]. 光学精密工程, 2012,(4): 811-817
WANG Hai, XIA Xiao-pin, ZHOU Rong-di. Machining and functional testing of microplasma reactors[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 811-817
王海, 夏小品, 周荣荻. 微小等离子体反应器的制作及性能测试[J]. 光学精密工程, 2012,(4): 811-817 DOI: 10.3788/OPE.20122004.0811.
WANG Hai, XIA Xiao-pin, ZHOU Rong-di. Machining and functional testing of microplasma reactors[J]. Editorial Office of Optics and Precision Engineering, 2012,(4): 811-817 DOI: 10.3788/OPE.20122004.0811.
设计了基于并行探针驱动的扫描刻蚀加工系统
用于微纳米尺度的刻蚀加工。研究了系统的核心器件-微小等离子体反应器的电学特性和发射光谱特性
以了解反应器中产生的反应等离子体性能的变化规律。基于微机电系统(MEMS)加工工艺制备了中间带有倒金字塔形状微型空腔的金属-绝缘体-金属3层结构的微小等离子体反应器。搭建了可测量等离子体伏安特性和发射光谱特性的实验系统
对放电气体为SF
6
工作气压在5~12 kPa
直流驱动模式下的微小等离子体反应器的电学和光谱特性进行了测试。实验结果表明
放电电流随着放电电压的增加而近似线性递增
放电电流由5 kPa时的2.1~2.82 A递增到12 kPa时的3.6~4.2 A
表明所产生的微小等离子体处于异常辉光放电模态。当器件特征尺寸由150 m减小至30 m时
微小等离子体发射光谱中氟原子特征谱线(703.7 nm)峰值增大了约56%
表明微小等离子体的浓度随尺度缩小而增强。实验结果表明
设计的微小等离子体反应器基本满足扫描刻蚀加工所需的高浓度等离子体源的性能要求。
A scanning plasma etching system based on parallel probe actuation was developed to realize micro- and nano-scale etching. The electrical and optical emission spectra of a micro plasma reactor which was a key device in the system were measured to explore the characteristics of the plasma in the reactor. First
a metal-dielectric-metal structure microplasma reactor with an inverted pyramidal hollow cathode was fabricated based on Micro-electric-mechanic System(MEMS) technology. Then
a testing system was set up to measure the
V-I
curve and optical emission spectra of the microplasma generated at a SF
6
gas pressure of 5-12 kPa and drived by a DC mode. Experimental result shows that the discharge current is increased in linearity with the discharge voltage. When the gas pressure increases from 5 kPa to 12 kPa
the discharge current is increased from 2.1~2.82 A to 3.6~4.2 A
which means that the microplasma is at an abnormal discharge mode. When the feature size of the reactor decreases from 150 m to 30 m
the characteristic line of fluorine(703.7 nm) is increased about 56%
which demonstrates that the plasma density is increased with reducing device sizes. The measurement result of electrical and optical emission spectra of microplasma indicates that the microplasam reactor is suitable for the scanning plasma etching of silicon.
任延同. 离子刻蚀技术现状与未来发展[J]. 光学 精密工程,1998,6(2):7-14. REN Y T. Presence and future developing tendency of ion-etching technology [J]. Opt. Precision Eng., 1998,6(2):7-14. (in Chinese)[2] BECKER K H,SCHOENBACH K H,EDEN J G. Microplasmas and applications[J]. Journal of Physics D: Applied Physics,2007,39(3):55-70.[3] SCHOENBACH K H,VERHAPPEN R,TESSNOW T,et al..Microhollow cathode discharges[J]. Appl. Phys. Lett.,1996,68(1):13-15.[4] 张巨帆,王波,董申. 大气等离子体抛光技术在超光滑硅表面加工中的应用[J]. 光学 精密工程,2007,15(11):1749-1755. ZHANG J F, WANG B, DONG SH. Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surface[J]. Opt. Precision Eng., 2007,15(11):1749-1755. (in Chinese)[5] FELIPE I, GON J K, SEUNG M L, et al.. Microplasmas: sources, particle kinetics, and biomedical applications[J]. Plasma Process. Polym. 2008,5:322-344.[6] YOSHIKI H, IKEDA K,WAKAKI A, et al.. Localized plasma processing of materials using atmospheric-pressure microplasma jets [J]. Jpn. J. Appl. Phys., 2003,42:4000-4003.[7] YOSHIKI H. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet [J]. Review of Scientific Instruments, 2007,78(4):3510.[8] SANKARAN R M,GIAPIS K P. Maskless etching of silicon using patterned microdischarges[J]. Applied Physics Letters, 2001, 79(5):593-595.[9] LIU CH. Parallel scanning probe arrays: their applications [J]. Materials Today, 2008, 11:22-29.[10] 王海.基于并行探针驱动的扫描等离子体加工技术的研究. 中国科学技术大学,2005. WANG H. Research of scanning plasma etching based on parallel probe actuation. University of Science and Technology of China, 2005. (in Chinese)[11] 王海,童云华,文莉. 微小等离子体反应器的导出机理研究[J]. 核聚变和等离子体物理,2011, 31(1):91-96. WANG H, TONG Y H, WEN L. Research of extraction mechanism for microplasma reactor[J]. Nuclear Fusion and Plasma Physics, 2011,31(1):91-96. (in Chinese)[12] BENEDIKT J,HOFMANN S, KNAKE N,et al.. Phase resolved optical emission spectroscopy of coaxial microplasma jet operated with He and Ar [J]. Eur. Phys. J. D, 2010, 60(3):539-546.[13] READLE J D,TOBIN K E,KIM K S,et al.. Flexible lightweight arrays of microcavity plasma devices: control of cavity geometry in thin substrates[J]. IEEE Trans. Plasma Sci., 2009, 37(6):1045-1054. [14] 王洪建,肖沙里,施军,等. 激光等离子体X射线极化光谱研究[J]. 光学 精密工程,2008,16(5):822-826. WANG H J, XIAO SH L, SHI J, et al.. X-ray polarization spectroscopy in laser-produced plasmas[J]. Opt. Precision Eng., 2008, 16(5):822-826. (in Chinese)
0
浏览量
387
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构