浏览全部资源
扫码关注微信
南京工程学院 自动化学院,江苏 南京,211167
收稿日期:2011-10-20,
修回日期:2011-12-15,
网络出版日期:2012-04-22,
纸质出版日期:2012-04-22
移动端阅览
温秀兰, 赵艺兵, 王东霞, 朱晓春, 曹未丰. 改进遗传算法与拟随机序列结合评定自由曲线轮廓度误差[J]. 光学精密工程, 2012,20(4): 835-842
WEN Xiu-lan, ZHAO Yi-bing, WANG Dong-xia, ZHU Xiao-chun, CAO Wei-feng. Evaluating freeform curve profile error based on improved genetic algorithm and quasi random sequence[J]. Editorial Office of Optics and Precision Engineering, 2012,20(4): 835-842
温秀兰, 赵艺兵, 王东霞, 朱晓春, 曹未丰. 改进遗传算法与拟随机序列结合评定自由曲线轮廓度误差[J]. 光学精密工程, 2012,20(4): 835-842 DOI: 10.3788/OPE.20122004.0835.
WEN Xiu-lan, ZHAO Yi-bing, WANG Dong-xia, ZHU Xiao-chun, CAO Wei-feng. Evaluating freeform curve profile error based on improved genetic algorithm and quasi random sequence[J]. Editorial Office of Optics and Precision Engineering, 2012,20(4): 835-842 DOI: 10.3788/OPE.20122004.0835.
为了高效率、高精度检测自由曲线和曲面零件并计算轮廓度误差
提出将改进遗传算法与拟随机序列结合来评定自由曲线轮廓度误差。首先
针对自由曲线因没有已知的解析表达式而常用离散点表示其轮廓的特点
采用非均匀有理B样条(NURBS)来表示自由曲线
并用改进遗传算法优化重建自由曲线;然后
应用拟随机Halton序列均匀产生参数值精确计算点到曲线最短距离。阐述了自由曲线重建时控制顶点及目标函数值的计算方法
确立了改进遗传算法重建自由曲线及采用拟随机序列生成参数值求解点到曲线最短距离的具体步骤。最后
针对仿真实例计算并实测零件曲线轮廓度误差。结果显示
自由曲线轮廓度误差评定精度高于99%
表明提出的方法算法简单、计算速度快、精度高
适于在工程计量中推广应用。
An evaluating method of freeform curve profile errors based on the Improved Genetic Algorithm(IGA) and quasi random sequence was proposed to inspect freeform curves and surface parts and to compute their profile errors efficiently and precisely. Firstly
according to the characteristics that the freeform curve was expressed by discrete points rather than an analytic function
the Non-uniform Rational B-spline (NURBS) was used to express the free curve and the IGA was proposed to reconstruct it. Then
the quasi random sequence was taken to generate parameter values uniformly and to calculate the shortest distance from a point to a reconstructed curve exactly.Furthermore
The computation methods of the control vertex and objective function value were described when freeform curve was reconstructed and the detailed steps were established for reconstructing the free curve and computing the shortest distance from the point to the curve based on the IGA and quasi random sequence. Finally
the curve profile errors of a simulation example and practical parts were calculated and measured. The results verify that the evaluation precision of freeform curve profile error is higher than 99%. The proposed method has the advantages of simple algorithm
rapid computation and high accuracy and it can be applied in engineering metrology.
XU Y, JIANG J, Li Z X. Cyclic optimization for localization in freeform surface inspection[J]. International Journal of Production Research, 2011,49(2):361-374[2] CERARDI A, MENGEGHELLO A, SAVIO G. Form errors estimation in free-form 2D and 3D geometries. International Conference on Innovative Methods in Product Design, Venice, Italy,2011:550-555.[3] 张琳,郭俊杰,姜瑞, 等. 自由曲线轮廓度误差评定中的坐标系自适应调整[J]. 仪器仪表学报,2002,23(2):115-117. ZHANG L, GUO J J, JIANG R, et al.. Self-adapt adjustment of coordinate system in evaluation of freeform curve profile[J]. Chinese Journal of Scientific Instrument, 2002,23(2):115-117. (in Chinese)[4] 杨密,李平,卢春霞,等. 逐次逼近法评定自由曲线的轮廓度误差[J]. 西安工业学院学报,2006,26(1):33-35. YANG M, LI P, LU CH X,et al.. An approaching method to evaluate profile error of free curve[J]. Journal of Xi'an Institute of Technology, 2006, 26(1):33-35. (in Chinese)[5] 郭慧,马永有,潘家祯. 基于遗传算法的复杂平面曲线轮廓度误差评定[J]. 华东理工大学学报,2007,33(6):888-892. GUO H,MA Y Y, PAN J ZH. Error evaluation on planar free form curve profile based on genetic algorithm[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2007,33(6):888-892. (in Chinese)[6] 王仲, 操晶晶, 张立昆,等. 基于图像的轮廓度测量与评定[J]. 光学 精密工程,2009,17(2):395-401. WANG ZH, CAO J J, ZHANG L K, et al.. Measurement and evaluation for profile tolerance based on images[J]. Opt. Precision Eng., 2009,17(2):395-401. (in Chinese)[7] AKEMI G, ANDRES I, JAIME P P. Iterative two-step genetic-algorithm-based method for efficient polynomial B-spline surface reconstruction[J]. Information Sciences, 2012,182(1):56-76 (Available online 8 October 2010).[8] 钱春. 基于区间牛顿法的点到参数曲线最小距离的计算方法[J]. 机电工程, 2010, 27(1):82-84. QIAN CH. Computing method for the minimum distance from a point to a parametric curve based on the interval Newton method[J]. Journal of Mechanical & Electrical Engineering, 2010,27(1):82-84. (in Chinese)[9] 廖平. 分割逼近法快速求解点到复杂平面曲线最小距离[J]. 计算机工程与应用, 2009,45(10):163-164. LIAO P. Fast calculating minimum distance between point and complex curve with subdivision approximating, algorithm[J]. Computer Engineering and Applications, 2009,45(10):163-164. (in Chinese)[10] 伍丽峰,陈岳坪,谌炎辉,等. 求点到空间参数曲线最小距离的几种算法[J]. 机械设计与制造,2011,9:15-17. WU L F,CHEN Y P,CHEN Y H,et al.. Algorithms on calculating minimum distance between point and spatial parametric curves[J]. Machinery Design & Manufacture, 2011, 9:15-17. (in Chinese)[11] 赵罡,穆国旺,王拉柱. 非均匀有理B样条[M]. 北京: 清华大学出版社, 2010. ZHAO G, MU G W, WANG L ZH. The NURBS BOOK [M]. Beijing: Science Press, 2010. (in Chinese)[12] WEN X L, XIA Q G, ZHAO Y B. An effective genetic algorithm for circularity error unified evaluation [J].International Journal of Machine Tools & Manufacture, 2006,46(11):1770-1777.[13] LEI G. Adaptive random search in quasi-Monte Carlo methods for global optimization [J]. Computers Mathematics Application,2002,43(6):747-754.[14] MAARANEN H, MIETTINEN K. Quasi-random initial population for genetic algorithms [J]. Computers and Mathematics with Applications, 2004,47(12):1885-1895.[15] WOLFGANG J. Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM[J]. Computational Statistics & Data Analysis, 2005,48(4):685-701.
0
浏览量
672
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构