浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春,130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2011-03-15,
修回日期:2011-04-08,
网络出版日期:2012-04-22,
纸质出版日期:2012-04-22
移动端阅览
卢启鹏, 陈丛, 彭忠琦. 自适应滤波在近红外无创生化分析中的应用[J]. 光学精密工程, 2012,20(4): 873-879
LU Qi-peng, CHEN Cong, PENG Zhong-qi. Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy[J]. Editorial Office of Optics and Precision Engineering, 2012,20(4): 873-879
卢启鹏, 陈丛, 彭忠琦. 自适应滤波在近红外无创生化分析中的应用[J]. 光学精密工程, 2012,20(4): 873-879 DOI: 10.3788/OPE.20122004.0873.
LU Qi-peng, CHEN Cong, PENG Zhong-qi. Application of adaptive filter to noninvasive biochemical examination by near infrared spectroscopy[J]. Editorial Office of Optics and Precision Engineering, 2012,20(4): 873-879 DOI: 10.3788/OPE.20122004.0873.
提出用血流容积差光谱相减法来消除近红外无创生化分析中组织背景的干扰。为提高光谱相减中所需获得的脉搏波近红外光谱信号的信噪比
研究了自适应滤波处理方法。介绍了最小均方算法(LMS)自适应滤波的基本原理
在此基础上提出了一种适用于处理本实验脉搏波光谱信号的自适应滤波方法;采用实验室自行研制的16元近红外脉搏波采集系统
获得人体脉搏波光谱信号;最后
利用提出的自适应滤波方法处理脉搏波光谱信号并分析其滤波效果。结果表明
利用该方法处理采集的脉搏波信号
可使血流容积光谱相减后血液光谱吸光度噪声由800 AU降低至12 AU
相邻波长的脉搏波相关系数由0.994 0提高至0.999 9。分析结果说明该自适应滤波方法可以有效地应用于近红外无创生化分析中。
Subtracted blood volume spectrometry was employed to the noninvasive biochemical examination with near infrared spectroscopy(NIRS) to eliminate the influence of tissues.To raise the Signal to Noise Ratio(SNR) of the NIRS pulse wave signal needed by the spectral subtraction
an effective adaptive filter method was proposed to process the pulse wave signal. The principles of Least Mean Square(LMS) adaptive filter were described
and a new adaptive filtering way fit for the pulse wave signal of this experiment was proposed. Then
a 16-pixel near-infrared pulse wave acquisition system made by ourselves was used to collect the pulse wave signals of human body. Finally
the proposed adaptive filtering way was used to process the NIRS pulse wave signals and analyze the results. The result shows that the noise level of blood spectrum has reduced from 800 AU to 12 AU after spectral subtraction by using the proposed method
and the related coefficient of pulse wave of adjacent wavelength has raised from 0.994 0 to 0.999 9. The analysed result verifies that the method is effective in the NIR noninvasive biochemical examination area.
陈星旦. 近红外光谱无创生化检验的可能性[J]. 光学 精密工程,2008,16(5):760-762. CHEN X D. The possibility of noninvasive near-infrared biochemical analysis[J]. Opt. Precision Eng., 2008,16(5):760-762. (in Chinese)[2] 丁海泉,卢启鹏,王动民,等. 近红外光谱无创血糖检测中有效信号提取方法的研究[J]. 光谱学与光谱分析,2010,30(1): 50-53. DING H Q, LU Q P, WANG D M, et al.. Research on noninvasive near-infrared spectral detection and effective signal extraction[J]. Spectroscopy and Spectral Analysis, 2010,30(1):50-53. (in Chinese)[3] WILLIAMS P, NORRIS K. Near-Infrared Technology in the Agricultural and Food Industries [M]. 2nd ed. American Association of Ceral Chemists,2001.[4] OSBONEB G. Practical NIR Spectroscopy with applications in food and beverage analysis[M]. 2nd ed. An imprint of Pearson Education, 1993.[5] SIESLER H W, OZAKI Y, KAWATA S, et al..Near-infrared Spectroscopy Principles, Instruments, Applications [M]. Wiley-Vch Verlag Gmb H, 2002.[6] 陆婉珍.现代近红外光谱分析技术[M]. 2版.北京:中国石化出版社,2007. LU W ZH. Modern Near Infrared Spectroscopy Analytical Technology [M]. 2nd ed. Chinese Petrochemical Press, 2007. (in Chinese)[7] 刘蓉,徐可欣,陈文亮,等. 光学无创血糖检测中的主要问题及研究进展[J]. 中国科学G辑:物理学 力学 天文学,2007,37(增):124-131. LIU R, XU K X, CHEN W L, et al.. Primal problem and headway of optics noninvasive glucose sensing[J]. China Science:Physics Mechanics Astronomy, 2007,37(Supp.): 124-131.(in Chinese)[8] MARUO K. In vivo noninvasive measurement of blood glucose by nearinfrared diffuse-reflectance spectroscopy [J]. Applied Spectroscopy, 2003,57(10):1236-1244.[9] LEE T W. Independent Component Analysis-Theory and Applications[M]. Kluwer Academic Publishers,1998.[10] GIROLAMI M. SelfOrganising Neural Networks Independent Component Analysis and Blind Source Separation[M]. Atheneum Press Ltd,1999.[11] 姜印平,李艳文. 基于提升方法的脉搏波信号处理[J]. 计算机仿真,2006,23(7):98-100. JIANG Y P, LI Y W. The pulse wave signal processing based on a lifting way[J]. Computer Simulation, 2006,23(7):98-100. (in Chinese)[12] 刘艳丽. 基于形态滤波的人体脉搏信号去噪处理[J]. 安徽建筑工业学院学报,2010,18(5):78-81. LIU Y L. Denoising human pulse signals based on the morphological filter[J]. Anhui Institute Joural of architecture, 2010,18(5):78-81. (in Chinese)[13] CHARLES F P. An analysis of Kalman filtering model errors[J]. IEEE Trans Automatic Control,1968:699-702.[14] KALMAN. A new approach to linear filtering and prediction problems[J].Transactions of the ASMEJournal of Basic Engineering,1960,82:35-45.[15] 黎旭,孙静. 基于LMS自适应滤波的噪声抵消[J]. 云南民族学院学报,2000,9(3):134-136. LI X, SUN J. The noise cancellation based on LMS adaptive filtering[J]. Journal of Yunnan Nationalities University, 2000,9(3):134-136. (in Chinese)[16] FARHANG B. Fast LMS/Newton algorithm based on auto-regressive modeling and their application to acoustic echo cancellation[J]. IEEE Trans. on Signal Processing,1997,45(8):1987-2000.
0
浏览量
223
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构