浏览全部资源
扫码关注微信
1. 北京航空航天大学 仪器光电学院 惯性技术国家级重点实验室 新型惯性仪表与导航系统技术国防重点学科实验室 北京,100191
2. 中国地质大学 信息技术实验中心,湖北 武汉,430074
收稿日期:2011-11-13,
修回日期:2012-02-10,
网络出版日期:2012-05-10,
纸质出版日期:2012-05-10
移动端阅览
全伟, 刘阳, 王广君. 基于姿态矩阵判据的光学焦距在线快速标定[J]. 光学精密工程, 2012,20(5): 934-941
QUAN Wei, LIU Yang, WANG Guang-jun. Online fast calibration of optical focal length based on attitude matrix criterion[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 934-941
全伟, 刘阳, 王广君. 基于姿态矩阵判据的光学焦距在线快速标定[J]. 光学精密工程, 2012,20(5): 934-941 DOI: 10.3788/OPE.20122005.0934.
QUAN Wei, LIU Yang, WANG Guang-jun. Online fast calibration of optical focal length based on attitude matrix criterion[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 934-941 DOI: 10.3788/OPE.20122005.0934.
针对在轨运行的微小航天器发射过程的振动引起的结构变形和在轨太阳光照产生的结构热变形会使发射前对惯性恒星罗盘(Inertial Stellar Compass:ISC)标定的光学系统焦距偏离实际值
进而影响微小航天器的高精度姿态确定的问题
提出了一种基于姿态矩阵判据的ISC光学系统焦距在线快速标定方法。首先
分析了光学系统焦距与姿态矩阵的映射关系;然后
利用任一时刻由滤波生成的姿态矩阵
结合姿态矩阵单位正交特性的这一判据
采用迭代法实现了ISC光学系统焦距的在线快速标定。实验结果表明:该方法对ISC光学系统焦距的标定精度同星点质心提取的像素精度相当
大约为0.01个像素。该方法可在轨随时进行光学系统焦距的标定
标定速度快
且不需要采集大量姿态测量传感器的数据
标定效果良好。
The structure deformation of a micro-spacecraft in orbit caused by launching vibration and its thermal deformation resulted from sunlight will change the optical focal length of an Inertial Stellar Compass ( ISC) in the calibration before launching. Furthermore
it will affect on the high-precision attitude determination for the micro-spacecraft. To improve the calibration
an online fast calibration method based on the attitude matrix criterion was presented. Firstly
this method was used to analyze the mapping relation between the optical focal length and the attitude matrix. Then
combining the attitude matrix generated by the filter in any time with the orthogonal unit features of attitude matrix
the focal length of ISC was calibrated online based on an iterative method. Experimental results indicate that the calibration precision by proposed method for the optical length of the ISC system is equivalent to the extracting precision by the stellar center of mass method
and it is about 0.01 pixel. This method can calibrate the focal length at any time in orbit
and have fast calibration speeds and better calibration results without capturing a large number of other attitude measurement data from sensors.
王大轶,黄翔宇. 深空探测自主导航与控制技术综述 [J]. 空间控制技术与应用,2009,35(3): 6-12. WANG D Y, HUANG X Y. Survey of autonomous navigation and control for deep space exploration [J]. Aerospace Control and Application, 2009, 35(3):6-12. (in Chinese)[2] BRADY T, TILLIER C, BROWN R, et al.. The inertial stellar compass: a new direction in spacecraft attitude determination . 16th Annual USU Conference on Small Satellites, Logan UT: AUSUCSS, 2002:1-8.[3] JANNE H. Geometric camera calibration using circular control points[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10):1066-1077.[4] 胡浩,梁晋,唐正宗,等. 大视场多像机视频测量系统的全局标定 [J]. 光学 精密工程, 2012, 20(2): 369-378. HU H, LIANG J, TANG ZH Z, et al.. Global calibration for muti-camera videogrammetric system with large-scale field-of-view[J]. Opt. Precision Eng., 2012, 20(2):369-378. (in Chinese)[5] WONPIL Y, YUNKOO C. A calibration-free lens distortion correction method for low cost digital imaging[J]. IEEE 0-7803-7750-8, 2003, I:183-186.[6] 刘金国. 大视场光电测量系统的精密几何标定和畸变校正的研究 [J]. 光学 精密工程, 1994, 2(4): 109-120. LIU J G. Study on high accurate geometric calibration of precision photoelectronic measuring system with large field of view and distortion correcting[J]. Opt. Precision Eng., 1994, 2(4):109-120. (in Chinese)[7] QING J, ZHANG Y M. Camera calibration with genetic algorithms[J]. IEEE Transaction on Systems, Man and Cybernetics, 2001, 31(2):120-130.[8] 赵磊,刘书桂. 基于改进遗传算法实现柔性三坐标测量机参数标定 [J]. 光学 精密工程, 2011, 19(11): 2753-2758. ZHAO L, LIU SH G. Implementation of parameter calibration for flexible coordinate measurement machine based on improving genetic algorithm[J]. Opt. Precision Eng., 2011, 19(11):2753-2758. (in Chinese)[9] HUI N B, PARTIHAR D K. Camera calibration using a genetic algorithm [J]. Engineering Optimization, 2008, 40(12): 1151-1169.[10] 屠善澄,邹广瑞. 卫星姿态动力学与控制(2)[M]. 北京:中国宇航出版社 ,1998. TU SH CH, ZOU G R. Satellite Attitude Dynamics and Control(2)[M]. Beijing: China Astronautic Publishing House, 1998. (in Chinese)[11] GAO Y SH, TSE SH F, GAO W. Online calibration for a stereo vision measurement system[J], Key Engineering Materials, 2005, 295:723-728.[12] SHU F W, TOMA L, NEDDERMEYER W, et al.. Precise online camera calibration in a robot navigating vision system . IEEE International Conference of Mechatronics and Automation, Niagara Falls, Ont., Canada: ICMA, 2005, 3: 1277-1282.[13] QUAN W, FANG J CH, GUO L. An adaptive segmented information fusion method for the attitude determination of nano-spacecrafts . Proceedings of SPIE-Seventh International Symposium on Instrumentation and Control Technology, Beijing, P.R. China:ISICT, 2008, 7129:2G.[14] CUI P L, ZHANG H J. QMRPF-UKF master-slave filtering for the attitude determination of micro-nano satellites using gyro and magnetometer[J]. Sensors. 2010, 10(11): 9935-9947.[15] 肖业伦. 航空航天器运动的建模-飞行动力学理论基础[M]. 北京:北京航空航天大学出版社 ,2003. XIAO Y L. Modeling of Aerospace Vehicles-Foundation of Flight Dynamics[M]. Beijing: Beihang University Press, 2003. (in Chinese)[16] SHUSTER M D. A survey of attitude representations[J]. Journal of the Astronautical Sciences, 1993, 41(4):439-517.[17] 房建成, 宁晓琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社 ,2006. FANG J CH, NING X L, TIAN Y L. Principles and Methods of Spacecraft Autonomous Celestial Navigation[M]. Beijing: National Defense Industry Press, 2006. (in Chinese)[18] 全伟, 刘百奇, 宫晓琳, 等. 惯性/天文/卫星组合导航技术[M]. 北京:国防工业出版社 ,2011. QUAN W, LIU B Q, GONG X L, et al.. INS/CNS/GNSS Integrated Navigation Technology[M]. Beijing: National Defense Industry Press, 2011. (in Chinese)
0
浏览量
247
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构